--- license: other license_name: genereviews license_link: https://www.ncbi.nlm.nih.gov/books/NBK138602/ configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: id dtype: string - name: ch_id dtype: string - name: keywords list: string - name: title dtype: string - name: authors dtype: string - name: abstract dtype: string - name: content dtype: string - name: references list: string - name: created_date dtype: string - name: updated_date dtype: string - name: revised_date dtype: string - name: journal dtype: string - name: source_url dtype: string - name: publication_types list: string splits: - name: train num_bytes: 57554171 num_examples: 929 download_size: 15286246 dataset_size: 57554171 language: - en tags: - medical - gene - reviews - medicine pretty_name: 'GeneReviews ' size_categories: - n<1K task_categories: - text-generation --- # GeneReviews Dataset Extraction This project extracts text and metadata from GeneReviews® chapters downloaded from NCBI Bookshelf and creates a structured dataset in Hugging Face format. ## Overview GeneReviews® is an international point-of-care resource for clinicians, providing clinically relevant and medically actionable information for inherited conditions. This project processes the XML files from the GeneReviews database and creates a structured dataset suitable for machine learning and research applications. ### 📈 **Dataset Statistics:** - **Total Records**: 929 GeneReviews chapters - **Average Abstract Length**: 899.6 characters - **Average Content Length**: 56,377.9 characters - **Total References**: 13,683 references across all chapters - **Average References per Chapter**: 14.7 - **Chapters with >100 references**: 12 chapters - **Total Keywords**: 9,616 - **Unique Keywords**: 6,824 ## Source Information - **Source**: [GeneReviews® on NCBI Bookshelf](https://www.ncbi.nlm.nih.gov/books/NBK1116/) - **Publisher**: University of Washington, Seattle - **ISSN**: 2372-0697 - **Content Type**: Clinical reviews of genetic conditions - **License**: Open access for noncommercial research purposes ## Dataset Structure Each record in the dataset contains the following fields: | Field | Type | Description | |-------|------|-------------| | `id` | string | Unique chapter identifier | | `ch_id` | string | Chapter ID (as you renamed it) | | `title` | string | Chapter title | | `authors` | string | Comma-separated author names | | `journal` | string | "GeneReviews®" | | **`abstract`** | **string** | **Chapter abstract/summary only** | | **`content`** | **string** | **Chapter body content only (excluding abstract)** | | **`references`** | **array** | **Array of reference citations** | | `keywords` | array | Keywords and terms | | `source_url` | string | Link to GeneReviews resource | | `publication_types` | array | ["Review", "Clinical Review"] | | `created_date` | string | Creation date | | `updated_date` | string | Last update date | | `revised_date` | string | Revision date | ## Files - `extract_genereviews.py`: Main extraction script - `load_genereviews_dataset.py`: Script to load and demonstrate the dataset - `requirements.txt`: Python dependencies - `genereviews_dataset/`: Hugging Face dataset directory - `genereviews_dataset.json`: JSON version of the dataset ## Installation 1. Install the required dependencies: ```bash pip install -r requirements.txt ``` ## Usage ```python from datasets import load_from_disk # Load the dataset dataset = load_from_disk("genereviews_dataset") # Access by chapter record = dataset[0] chapter_id = record['ch_id'] # Access separated content abstract = record['abstract'] # Only the abstract content = record['content'] # Only the body content references = record['references'] # Array of reference citations ``` ### Search for Specific Conditions ```python # Search for cystic fibrosis cf_records = dataset.filter(lambda x: "cystic fibrosis" in x['title'].lower()) # Search for cancer-related content cancer_records = dataset.filter(lambda x: "cancer" in x['content'].lower()) ``` ### Analyze Publication Dates ```python # Find recently updated chapters recent_updates = dataset.filter(lambda x: "2024" in x['updated_date']) ``` ### Extract Keywords ```python # Get all unique keywords all_keywords = set() for record in dataset: all_keywords.update(record['keywords']) ``` ## Citation When using this dataset, please cite: ``` GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1116/ ``` ## License This dataset is derived from GeneReviews®, which is owned by the University of Washington. Permission is granted to reproduce, distribute, and translate copies of content materials for noncommercial research purposes only, provided that proper attribution is given.