import json import datasets _DESCRIPTION = "Neural data with intent context" _CITATION = "" _HOMEPAGE = "" _LICENSE = "" class NeuralData(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ "timestamp": datasets.Value("int64"), "session_time": datasets.Value("int64"), "channels": { f"channel_{i}": datasets.Value("float64") for i in range(32) }, "intent_context": { "mouse_movement": datasets.Sequence(datasets.Value("int64")), "keyboard_state": { "mouse": datasets.Value("bool") }, "camera_rotation": datasets.Sequence(datasets.Value("float64")), "active_targets": datasets.Value("int64") } }), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE, ) def _split_generators(self, dl_manager): return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": "neural_data.txt"} ) ] def _generate_examples(self, filepath): with open(filepath, "r") as f: for idx, line in enumerate(f): if line.strip(): data = json.loads(line) yield idx, data