Revert "Build uploaded using `kernels`."
Browse filesThis reverts commit 67ac53b37fc4c10a1ca2f201cd5da2d71f674f2e.
- build/torch28-cxx11-cu126-x86_64-linux/paged_attention/__init__.py +21 -0
- build/torch28-cxx11-cu126-x86_64-linux/paged_attention/_custom_ops.py +173 -0
- build/torch28-cxx11-cu126-x86_64-linux/paged_attention/_ops.py +9 -0
- build/torch28-cxx11-cu126-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so +3 -0
- build/torch28-cxx11-cu126-x86_64-linux/paged_attention/platforms.py +92 -0
- build/torch28-cxx11-cu128-x86_64-linux/paged_attention/__init__.py +21 -0
- build/torch28-cxx11-cu128-x86_64-linux/paged_attention/_custom_ops.py +173 -0
- build/torch28-cxx11-cu128-x86_64-linux/paged_attention/_ops.py +9 -0
- build/torch28-cxx11-cu128-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so +3 -0
- build/torch28-cxx11-cu128-x86_64-linux/paged_attention/platforms.py +92 -0
- build/torch28-cxx11-cu129-x86_64-linux/paged_attention/__init__.py +21 -0
- build/torch28-cxx11-cu129-x86_64-linux/paged_attention/_custom_ops.py +173 -0
- build/torch28-cxx11-cu129-x86_64-linux/paged_attention/_ops.py +9 -0
- build/torch28-cxx11-cu129-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so +3 -0
- build/torch28-cxx11-cu129-x86_64-linux/paged_attention/platforms.py +92 -0
- build/torch28-cxx11-rocm63-x86_64-linux/paged_attention/__init__.py +21 -0
- build/torch28-cxx11-rocm63-x86_64-linux/paged_attention/_custom_ops.py +173 -0
- build/torch28-cxx11-rocm63-x86_64-linux/paged_attention/_ops.py +9 -0
- build/torch28-cxx11-rocm63-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so +3 -0
- build/torch28-cxx11-rocm63-x86_64-linux/paged_attention/platforms.py +92 -0
- build/torch28-cxx11-rocm64-x86_64-linux/paged_attention/__init__.py +21 -0
- build/torch28-cxx11-rocm64-x86_64-linux/paged_attention/_custom_ops.py +173 -0
- build/torch28-cxx11-rocm64-x86_64-linux/paged_attention/_ops.py +9 -0
- build/torch28-cxx11-rocm64-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so +3 -0
- build/torch28-cxx11-rocm64-x86_64-linux/paged_attention/platforms.py +92 -0
- build/torch29-cxx11-cu126-x86_64-linux/paged_attention/__init__.py +21 -0
- build/torch29-cxx11-cu126-x86_64-linux/paged_attention/_custom_ops.py +173 -0
- build/torch29-cxx11-cu126-x86_64-linux/paged_attention/_ops.py +9 -0
- build/torch29-cxx11-cu126-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so +3 -0
- build/torch29-cxx11-cu126-x86_64-linux/paged_attention/platforms.py +92 -0
- build/torch29-cxx11-cu128-x86_64-linux/paged_attention/__init__.py +21 -0
- build/torch29-cxx11-cu128-x86_64-linux/paged_attention/_custom_ops.py +173 -0
- build/torch29-cxx11-cu128-x86_64-linux/paged_attention/_ops.py +9 -0
- build/torch29-cxx11-cu128-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so +3 -0
- build/torch29-cxx11-cu128-x86_64-linux/paged_attention/platforms.py +92 -0
- build/torch29-cxx11-cu130-x86_64-linux/paged_attention/__init__.py +21 -0
- build/torch29-cxx11-cu130-x86_64-linux/paged_attention/_custom_ops.py +173 -0
- build/torch29-cxx11-cu130-x86_64-linux/paged_attention/_ops.py +9 -0
- build/torch29-cxx11-cu130-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so +3 -0
- build/torch29-cxx11-cu130-x86_64-linux/paged_attention/platforms.py +92 -0
- build/torch29-cxx11-rocm63-x86_64-linux/paged_attention/__init__.py +21 -0
- build/torch29-cxx11-rocm63-x86_64-linux/paged_attention/_custom_ops.py +173 -0
- build/torch29-cxx11-rocm63-x86_64-linux/paged_attention/_ops.py +9 -0
- build/torch29-cxx11-rocm63-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so +3 -0
- build/torch29-cxx11-rocm63-x86_64-linux/paged_attention/platforms.py +92 -0
- build/torch29-cxx11-rocm64-x86_64-linux/paged_attention/__init__.py +21 -0
- build/torch29-cxx11-rocm64-x86_64-linux/paged_attention/_custom_ops.py +173 -0
- build/torch29-cxx11-rocm64-x86_64-linux/paged_attention/_ops.py +9 -0
- build/torch29-cxx11-rocm64-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so +3 -0
- build/torch29-cxx11-rocm64-x86_64-linux/paged_attention/platforms.py +92 -0
build/torch28-cxx11-cu126-x86_64-linux/paged_attention/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ._custom_ops import (
|
| 2 |
+
convert_fp8,
|
| 3 |
+
copy_blocks,
|
| 4 |
+
paged_attention_v1,
|
| 5 |
+
paged_attention_v2,
|
| 6 |
+
reshape_and_cache,
|
| 7 |
+
reshape_and_cache_flash,
|
| 8 |
+
swap_blocks,
|
| 9 |
+
)
|
| 10 |
+
from ._ops import ops
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
"convert_fp8",
|
| 14 |
+
"copy_blocks",
|
| 15 |
+
"ops",
|
| 16 |
+
"paged_attention_v1",
|
| 17 |
+
"paged_attention_v2",
|
| 18 |
+
"reshape_and_cache",
|
| 19 |
+
"reshape_and_cache_flash",
|
| 20 |
+
"swap_blocks",
|
| 21 |
+
]
|
build/torch28-cxx11-cu126-x86_64-linux/paged_attention/_custom_ops.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# page attention ops
|
| 9 |
+
def paged_attention_v1(
|
| 10 |
+
out: torch.Tensor,
|
| 11 |
+
query: torch.Tensor,
|
| 12 |
+
key_cache: torch.Tensor,
|
| 13 |
+
value_cache: torch.Tensor,
|
| 14 |
+
num_kv_heads: int,
|
| 15 |
+
scale: float,
|
| 16 |
+
block_tables: torch.Tensor,
|
| 17 |
+
seq_lens: torch.Tensor,
|
| 18 |
+
block_size: int,
|
| 19 |
+
max_seq_len: int,
|
| 20 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 21 |
+
kv_cache_dtype: str,
|
| 22 |
+
k_scale: float,
|
| 23 |
+
v_scale: float,
|
| 24 |
+
tp_rank: int = 0,
|
| 25 |
+
blocksparse_local_blocks: int = 0,
|
| 26 |
+
blocksparse_vert_stride: int = 0,
|
| 27 |
+
blocksparse_block_size: int = 64,
|
| 28 |
+
blocksparse_head_sliding_step: int = 0,
|
| 29 |
+
) -> None:
|
| 30 |
+
ops.paged_attention_v1(
|
| 31 |
+
out,
|
| 32 |
+
query,
|
| 33 |
+
key_cache,
|
| 34 |
+
value_cache,
|
| 35 |
+
num_kv_heads,
|
| 36 |
+
scale,
|
| 37 |
+
block_tables,
|
| 38 |
+
seq_lens,
|
| 39 |
+
block_size,
|
| 40 |
+
max_seq_len,
|
| 41 |
+
alibi_slopes,
|
| 42 |
+
kv_cache_dtype,
|
| 43 |
+
k_scale,
|
| 44 |
+
v_scale,
|
| 45 |
+
tp_rank,
|
| 46 |
+
blocksparse_local_blocks,
|
| 47 |
+
blocksparse_vert_stride,
|
| 48 |
+
blocksparse_block_size,
|
| 49 |
+
blocksparse_head_sliding_step,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def paged_attention_v2(
|
| 54 |
+
out: torch.Tensor,
|
| 55 |
+
exp_sum: torch.Tensor,
|
| 56 |
+
max_logits: torch.Tensor,
|
| 57 |
+
tmp_out: torch.Tensor,
|
| 58 |
+
query: torch.Tensor,
|
| 59 |
+
key_cache: torch.Tensor,
|
| 60 |
+
value_cache: torch.Tensor,
|
| 61 |
+
num_kv_heads: int,
|
| 62 |
+
scale: float,
|
| 63 |
+
block_tables: torch.Tensor,
|
| 64 |
+
seq_lens: torch.Tensor,
|
| 65 |
+
block_size: int,
|
| 66 |
+
max_seq_len: int,
|
| 67 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 68 |
+
kv_cache_dtype: str,
|
| 69 |
+
k_scale: float,
|
| 70 |
+
v_scale: float,
|
| 71 |
+
tp_rank: int = 0,
|
| 72 |
+
blocksparse_local_blocks: int = 0,
|
| 73 |
+
blocksparse_vert_stride: int = 0,
|
| 74 |
+
blocksparse_block_size: int = 64,
|
| 75 |
+
blocksparse_head_sliding_step: int = 0,
|
| 76 |
+
) -> None:
|
| 77 |
+
ops.paged_attention_v2(
|
| 78 |
+
out,
|
| 79 |
+
exp_sum,
|
| 80 |
+
max_logits,
|
| 81 |
+
tmp_out,
|
| 82 |
+
query,
|
| 83 |
+
key_cache,
|
| 84 |
+
value_cache,
|
| 85 |
+
num_kv_heads,
|
| 86 |
+
scale,
|
| 87 |
+
block_tables,
|
| 88 |
+
seq_lens,
|
| 89 |
+
block_size,
|
| 90 |
+
max_seq_len,
|
| 91 |
+
alibi_slopes,
|
| 92 |
+
kv_cache_dtype,
|
| 93 |
+
k_scale,
|
| 94 |
+
v_scale,
|
| 95 |
+
tp_rank,
|
| 96 |
+
blocksparse_local_blocks,
|
| 97 |
+
blocksparse_vert_stride,
|
| 98 |
+
blocksparse_block_size,
|
| 99 |
+
blocksparse_head_sliding_step,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def reshape_and_cache(
|
| 104 |
+
key: torch.Tensor,
|
| 105 |
+
value: torch.Tensor,
|
| 106 |
+
key_cache: torch.Tensor,
|
| 107 |
+
value_cache: torch.Tensor,
|
| 108 |
+
slot_mapping: torch.Tensor,
|
| 109 |
+
kv_cache_dtype: str,
|
| 110 |
+
k_scale: float,
|
| 111 |
+
v_scale: float,
|
| 112 |
+
) -> None:
|
| 113 |
+
ops.reshape_and_cache(
|
| 114 |
+
key,
|
| 115 |
+
value,
|
| 116 |
+
key_cache,
|
| 117 |
+
value_cache,
|
| 118 |
+
slot_mapping,
|
| 119 |
+
kv_cache_dtype,
|
| 120 |
+
k_scale,
|
| 121 |
+
v_scale,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def reshape_and_cache_flash(
|
| 126 |
+
key: torch.Tensor,
|
| 127 |
+
value: torch.Tensor,
|
| 128 |
+
key_cache: torch.Tensor,
|
| 129 |
+
value_cache: torch.Tensor,
|
| 130 |
+
slot_mapping: torch.Tensor,
|
| 131 |
+
kv_cache_dtype: str,
|
| 132 |
+
k_scale: torch.Tensor,
|
| 133 |
+
v_scale: torch.Tensor,
|
| 134 |
+
) -> None:
|
| 135 |
+
ops.reshape_and_cache_flash(
|
| 136 |
+
key,
|
| 137 |
+
value,
|
| 138 |
+
key_cache,
|
| 139 |
+
value_cache,
|
| 140 |
+
slot_mapping,
|
| 141 |
+
kv_cache_dtype,
|
| 142 |
+
k_scale,
|
| 143 |
+
v_scale,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def copy_blocks(
|
| 148 |
+
key_caches: List[torch.Tensor],
|
| 149 |
+
value_caches: List[torch.Tensor],
|
| 150 |
+
block_mapping: torch.Tensor,
|
| 151 |
+
) -> None:
|
| 152 |
+
ops.copy_blocks(key_caches, value_caches, block_mapping)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def swap_blocks(
|
| 156 |
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
| 157 |
+
) -> None:
|
| 158 |
+
ops.swap_blocks(src, dst, block_mapping)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def convert_fp8(
|
| 162 |
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
| 163 |
+
) -> None:
|
| 164 |
+
ops.convert_fp8(output, input, scale, kv_dtype)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
__all__ = [
|
| 168 |
+
"convert_fp8",
|
| 169 |
+
"paged_attention_v1",
|
| 170 |
+
"paged_attention_v2",
|
| 171 |
+
"reshape_and_cache",
|
| 172 |
+
"copy_blocks",
|
| 173 |
+
]
|
build/torch28-cxx11-cu126-x86_64-linux/paged_attention/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _paged_attention_287831d
|
| 3 |
+
ops = torch.ops._paged_attention_287831d
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_paged_attention_287831d::{op_name}"
|
build/torch28-cxx11-cu126-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d7df0c8b8817d956e843be64c94018f7a4f11059f4efd6e0e8e09171afdaa0f4
|
| 3 |
+
size 85751728
|
build/torch28-cxx11-cu126-x86_64-linux/paged_attention/platforms.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from abc import ABC, abstractmethod
|
| 4 |
+
from functools import lru_cache, wraps
|
| 5 |
+
from typing import Callable, ParamSpec, TypeVar
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
IS_ROCM = torch.version.hip is not None
|
| 11 |
+
IS_MPS = torch.backends.mps.is_available()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Platform(ABC):
|
| 15 |
+
@classmethod
|
| 16 |
+
def seed_everything(cls, seed: int) -> None:
|
| 17 |
+
"""
|
| 18 |
+
Set the seed of each random module.
|
| 19 |
+
`torch.manual_seed` will set seed on all devices.
|
| 20 |
+
|
| 21 |
+
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
| 22 |
+
"""
|
| 23 |
+
random.seed(seed)
|
| 24 |
+
np.random.seed(seed)
|
| 25 |
+
torch.manual_seed(seed)
|
| 26 |
+
|
| 27 |
+
@abstractmethod
|
| 28 |
+
def get_device_name(self, device_id: int = 0) -> str: ...
|
| 29 |
+
|
| 30 |
+
@abstractmethod
|
| 31 |
+
def is_cuda(self) -> bool: ...
|
| 32 |
+
|
| 33 |
+
@abstractmethod
|
| 34 |
+
def is_rocm(self) -> bool: ...
|
| 35 |
+
|
| 36 |
+
@abstractmethod
|
| 37 |
+
def is_mps(self) -> bool: ...
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class CudaPlatform(Platform):
|
| 41 |
+
@classmethod
|
| 42 |
+
@lru_cache(maxsize=8)
|
| 43 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 44 |
+
return torch.cuda.get_device_name(0)
|
| 45 |
+
|
| 46 |
+
def is_cuda(self) -> bool:
|
| 47 |
+
return True
|
| 48 |
+
|
| 49 |
+
def is_rocm(self) -> bool:
|
| 50 |
+
return False
|
| 51 |
+
|
| 52 |
+
def is_mps(self) -> bool:
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class RocmPlatform(Platform):
|
| 57 |
+
@classmethod
|
| 58 |
+
@lru_cache(maxsize=8)
|
| 59 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 60 |
+
return torch.cuda.get_device_name(device_id)
|
| 61 |
+
|
| 62 |
+
def is_cuda(self) -> bool:
|
| 63 |
+
return False
|
| 64 |
+
|
| 65 |
+
def is_rocm(self) -> bool:
|
| 66 |
+
return True
|
| 67 |
+
|
| 68 |
+
def is_mps(self) -> bool:
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class MpsPlatform(Platform):
|
| 73 |
+
@classmethod
|
| 74 |
+
@lru_cache(maxsize=8)
|
| 75 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 76 |
+
return torch.cuda.get_device_name(device_id)
|
| 77 |
+
|
| 78 |
+
def is_cuda(self) -> bool:
|
| 79 |
+
return False
|
| 80 |
+
|
| 81 |
+
def is_rocm(self) -> bool:
|
| 82 |
+
return False
|
| 83 |
+
|
| 84 |
+
def is_mps(self) -> bool:
|
| 85 |
+
return True
|
| 86 |
+
|
| 87 |
+
current_platform = (
|
| 88 |
+
RocmPlatform() if IS_ROCM else
|
| 89 |
+
MpsPlatform() if IS_MPS else
|
| 90 |
+
CudaPlatform() if torch.cuda.is_available() else
|
| 91 |
+
None
|
| 92 |
+
)
|
build/torch28-cxx11-cu128-x86_64-linux/paged_attention/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ._custom_ops import (
|
| 2 |
+
convert_fp8,
|
| 3 |
+
copy_blocks,
|
| 4 |
+
paged_attention_v1,
|
| 5 |
+
paged_attention_v2,
|
| 6 |
+
reshape_and_cache,
|
| 7 |
+
reshape_and_cache_flash,
|
| 8 |
+
swap_blocks,
|
| 9 |
+
)
|
| 10 |
+
from ._ops import ops
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
"convert_fp8",
|
| 14 |
+
"copy_blocks",
|
| 15 |
+
"ops",
|
| 16 |
+
"paged_attention_v1",
|
| 17 |
+
"paged_attention_v2",
|
| 18 |
+
"reshape_and_cache",
|
| 19 |
+
"reshape_and_cache_flash",
|
| 20 |
+
"swap_blocks",
|
| 21 |
+
]
|
build/torch28-cxx11-cu128-x86_64-linux/paged_attention/_custom_ops.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# page attention ops
|
| 9 |
+
def paged_attention_v1(
|
| 10 |
+
out: torch.Tensor,
|
| 11 |
+
query: torch.Tensor,
|
| 12 |
+
key_cache: torch.Tensor,
|
| 13 |
+
value_cache: torch.Tensor,
|
| 14 |
+
num_kv_heads: int,
|
| 15 |
+
scale: float,
|
| 16 |
+
block_tables: torch.Tensor,
|
| 17 |
+
seq_lens: torch.Tensor,
|
| 18 |
+
block_size: int,
|
| 19 |
+
max_seq_len: int,
|
| 20 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 21 |
+
kv_cache_dtype: str,
|
| 22 |
+
k_scale: float,
|
| 23 |
+
v_scale: float,
|
| 24 |
+
tp_rank: int = 0,
|
| 25 |
+
blocksparse_local_blocks: int = 0,
|
| 26 |
+
blocksparse_vert_stride: int = 0,
|
| 27 |
+
blocksparse_block_size: int = 64,
|
| 28 |
+
blocksparse_head_sliding_step: int = 0,
|
| 29 |
+
) -> None:
|
| 30 |
+
ops.paged_attention_v1(
|
| 31 |
+
out,
|
| 32 |
+
query,
|
| 33 |
+
key_cache,
|
| 34 |
+
value_cache,
|
| 35 |
+
num_kv_heads,
|
| 36 |
+
scale,
|
| 37 |
+
block_tables,
|
| 38 |
+
seq_lens,
|
| 39 |
+
block_size,
|
| 40 |
+
max_seq_len,
|
| 41 |
+
alibi_slopes,
|
| 42 |
+
kv_cache_dtype,
|
| 43 |
+
k_scale,
|
| 44 |
+
v_scale,
|
| 45 |
+
tp_rank,
|
| 46 |
+
blocksparse_local_blocks,
|
| 47 |
+
blocksparse_vert_stride,
|
| 48 |
+
blocksparse_block_size,
|
| 49 |
+
blocksparse_head_sliding_step,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def paged_attention_v2(
|
| 54 |
+
out: torch.Tensor,
|
| 55 |
+
exp_sum: torch.Tensor,
|
| 56 |
+
max_logits: torch.Tensor,
|
| 57 |
+
tmp_out: torch.Tensor,
|
| 58 |
+
query: torch.Tensor,
|
| 59 |
+
key_cache: torch.Tensor,
|
| 60 |
+
value_cache: torch.Tensor,
|
| 61 |
+
num_kv_heads: int,
|
| 62 |
+
scale: float,
|
| 63 |
+
block_tables: torch.Tensor,
|
| 64 |
+
seq_lens: torch.Tensor,
|
| 65 |
+
block_size: int,
|
| 66 |
+
max_seq_len: int,
|
| 67 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 68 |
+
kv_cache_dtype: str,
|
| 69 |
+
k_scale: float,
|
| 70 |
+
v_scale: float,
|
| 71 |
+
tp_rank: int = 0,
|
| 72 |
+
blocksparse_local_blocks: int = 0,
|
| 73 |
+
blocksparse_vert_stride: int = 0,
|
| 74 |
+
blocksparse_block_size: int = 64,
|
| 75 |
+
blocksparse_head_sliding_step: int = 0,
|
| 76 |
+
) -> None:
|
| 77 |
+
ops.paged_attention_v2(
|
| 78 |
+
out,
|
| 79 |
+
exp_sum,
|
| 80 |
+
max_logits,
|
| 81 |
+
tmp_out,
|
| 82 |
+
query,
|
| 83 |
+
key_cache,
|
| 84 |
+
value_cache,
|
| 85 |
+
num_kv_heads,
|
| 86 |
+
scale,
|
| 87 |
+
block_tables,
|
| 88 |
+
seq_lens,
|
| 89 |
+
block_size,
|
| 90 |
+
max_seq_len,
|
| 91 |
+
alibi_slopes,
|
| 92 |
+
kv_cache_dtype,
|
| 93 |
+
k_scale,
|
| 94 |
+
v_scale,
|
| 95 |
+
tp_rank,
|
| 96 |
+
blocksparse_local_blocks,
|
| 97 |
+
blocksparse_vert_stride,
|
| 98 |
+
blocksparse_block_size,
|
| 99 |
+
blocksparse_head_sliding_step,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def reshape_and_cache(
|
| 104 |
+
key: torch.Tensor,
|
| 105 |
+
value: torch.Tensor,
|
| 106 |
+
key_cache: torch.Tensor,
|
| 107 |
+
value_cache: torch.Tensor,
|
| 108 |
+
slot_mapping: torch.Tensor,
|
| 109 |
+
kv_cache_dtype: str,
|
| 110 |
+
k_scale: float,
|
| 111 |
+
v_scale: float,
|
| 112 |
+
) -> None:
|
| 113 |
+
ops.reshape_and_cache(
|
| 114 |
+
key,
|
| 115 |
+
value,
|
| 116 |
+
key_cache,
|
| 117 |
+
value_cache,
|
| 118 |
+
slot_mapping,
|
| 119 |
+
kv_cache_dtype,
|
| 120 |
+
k_scale,
|
| 121 |
+
v_scale,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def reshape_and_cache_flash(
|
| 126 |
+
key: torch.Tensor,
|
| 127 |
+
value: torch.Tensor,
|
| 128 |
+
key_cache: torch.Tensor,
|
| 129 |
+
value_cache: torch.Tensor,
|
| 130 |
+
slot_mapping: torch.Tensor,
|
| 131 |
+
kv_cache_dtype: str,
|
| 132 |
+
k_scale: torch.Tensor,
|
| 133 |
+
v_scale: torch.Tensor,
|
| 134 |
+
) -> None:
|
| 135 |
+
ops.reshape_and_cache_flash(
|
| 136 |
+
key,
|
| 137 |
+
value,
|
| 138 |
+
key_cache,
|
| 139 |
+
value_cache,
|
| 140 |
+
slot_mapping,
|
| 141 |
+
kv_cache_dtype,
|
| 142 |
+
k_scale,
|
| 143 |
+
v_scale,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def copy_blocks(
|
| 148 |
+
key_caches: List[torch.Tensor],
|
| 149 |
+
value_caches: List[torch.Tensor],
|
| 150 |
+
block_mapping: torch.Tensor,
|
| 151 |
+
) -> None:
|
| 152 |
+
ops.copy_blocks(key_caches, value_caches, block_mapping)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def swap_blocks(
|
| 156 |
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
| 157 |
+
) -> None:
|
| 158 |
+
ops.swap_blocks(src, dst, block_mapping)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def convert_fp8(
|
| 162 |
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
| 163 |
+
) -> None:
|
| 164 |
+
ops.convert_fp8(output, input, scale, kv_dtype)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
__all__ = [
|
| 168 |
+
"convert_fp8",
|
| 169 |
+
"paged_attention_v1",
|
| 170 |
+
"paged_attention_v2",
|
| 171 |
+
"reshape_and_cache",
|
| 172 |
+
"copy_blocks",
|
| 173 |
+
]
|
build/torch28-cxx11-cu128-x86_64-linux/paged_attention/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _paged_attention_287831d
|
| 3 |
+
ops = torch.ops._paged_attention_287831d
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_paged_attention_287831d::{op_name}"
|
build/torch28-cxx11-cu128-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a60fe3114de0950f07a243dd41c6da8805d293fd649de6fc580ac585ffb19ca2
|
| 3 |
+
size 102693952
|
build/torch28-cxx11-cu128-x86_64-linux/paged_attention/platforms.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from abc import ABC, abstractmethod
|
| 4 |
+
from functools import lru_cache, wraps
|
| 5 |
+
from typing import Callable, ParamSpec, TypeVar
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
IS_ROCM = torch.version.hip is not None
|
| 11 |
+
IS_MPS = torch.backends.mps.is_available()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Platform(ABC):
|
| 15 |
+
@classmethod
|
| 16 |
+
def seed_everything(cls, seed: int) -> None:
|
| 17 |
+
"""
|
| 18 |
+
Set the seed of each random module.
|
| 19 |
+
`torch.manual_seed` will set seed on all devices.
|
| 20 |
+
|
| 21 |
+
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
| 22 |
+
"""
|
| 23 |
+
random.seed(seed)
|
| 24 |
+
np.random.seed(seed)
|
| 25 |
+
torch.manual_seed(seed)
|
| 26 |
+
|
| 27 |
+
@abstractmethod
|
| 28 |
+
def get_device_name(self, device_id: int = 0) -> str: ...
|
| 29 |
+
|
| 30 |
+
@abstractmethod
|
| 31 |
+
def is_cuda(self) -> bool: ...
|
| 32 |
+
|
| 33 |
+
@abstractmethod
|
| 34 |
+
def is_rocm(self) -> bool: ...
|
| 35 |
+
|
| 36 |
+
@abstractmethod
|
| 37 |
+
def is_mps(self) -> bool: ...
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class CudaPlatform(Platform):
|
| 41 |
+
@classmethod
|
| 42 |
+
@lru_cache(maxsize=8)
|
| 43 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 44 |
+
return torch.cuda.get_device_name(0)
|
| 45 |
+
|
| 46 |
+
def is_cuda(self) -> bool:
|
| 47 |
+
return True
|
| 48 |
+
|
| 49 |
+
def is_rocm(self) -> bool:
|
| 50 |
+
return False
|
| 51 |
+
|
| 52 |
+
def is_mps(self) -> bool:
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class RocmPlatform(Platform):
|
| 57 |
+
@classmethod
|
| 58 |
+
@lru_cache(maxsize=8)
|
| 59 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 60 |
+
return torch.cuda.get_device_name(device_id)
|
| 61 |
+
|
| 62 |
+
def is_cuda(self) -> bool:
|
| 63 |
+
return False
|
| 64 |
+
|
| 65 |
+
def is_rocm(self) -> bool:
|
| 66 |
+
return True
|
| 67 |
+
|
| 68 |
+
def is_mps(self) -> bool:
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class MpsPlatform(Platform):
|
| 73 |
+
@classmethod
|
| 74 |
+
@lru_cache(maxsize=8)
|
| 75 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 76 |
+
return torch.cuda.get_device_name(device_id)
|
| 77 |
+
|
| 78 |
+
def is_cuda(self) -> bool:
|
| 79 |
+
return False
|
| 80 |
+
|
| 81 |
+
def is_rocm(self) -> bool:
|
| 82 |
+
return False
|
| 83 |
+
|
| 84 |
+
def is_mps(self) -> bool:
|
| 85 |
+
return True
|
| 86 |
+
|
| 87 |
+
current_platform = (
|
| 88 |
+
RocmPlatform() if IS_ROCM else
|
| 89 |
+
MpsPlatform() if IS_MPS else
|
| 90 |
+
CudaPlatform() if torch.cuda.is_available() else
|
| 91 |
+
None
|
| 92 |
+
)
|
build/torch28-cxx11-cu129-x86_64-linux/paged_attention/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ._custom_ops import (
|
| 2 |
+
convert_fp8,
|
| 3 |
+
copy_blocks,
|
| 4 |
+
paged_attention_v1,
|
| 5 |
+
paged_attention_v2,
|
| 6 |
+
reshape_and_cache,
|
| 7 |
+
reshape_and_cache_flash,
|
| 8 |
+
swap_blocks,
|
| 9 |
+
)
|
| 10 |
+
from ._ops import ops
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
"convert_fp8",
|
| 14 |
+
"copy_blocks",
|
| 15 |
+
"ops",
|
| 16 |
+
"paged_attention_v1",
|
| 17 |
+
"paged_attention_v2",
|
| 18 |
+
"reshape_and_cache",
|
| 19 |
+
"reshape_and_cache_flash",
|
| 20 |
+
"swap_blocks",
|
| 21 |
+
]
|
build/torch28-cxx11-cu129-x86_64-linux/paged_attention/_custom_ops.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# page attention ops
|
| 9 |
+
def paged_attention_v1(
|
| 10 |
+
out: torch.Tensor,
|
| 11 |
+
query: torch.Tensor,
|
| 12 |
+
key_cache: torch.Tensor,
|
| 13 |
+
value_cache: torch.Tensor,
|
| 14 |
+
num_kv_heads: int,
|
| 15 |
+
scale: float,
|
| 16 |
+
block_tables: torch.Tensor,
|
| 17 |
+
seq_lens: torch.Tensor,
|
| 18 |
+
block_size: int,
|
| 19 |
+
max_seq_len: int,
|
| 20 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 21 |
+
kv_cache_dtype: str,
|
| 22 |
+
k_scale: float,
|
| 23 |
+
v_scale: float,
|
| 24 |
+
tp_rank: int = 0,
|
| 25 |
+
blocksparse_local_blocks: int = 0,
|
| 26 |
+
blocksparse_vert_stride: int = 0,
|
| 27 |
+
blocksparse_block_size: int = 64,
|
| 28 |
+
blocksparse_head_sliding_step: int = 0,
|
| 29 |
+
) -> None:
|
| 30 |
+
ops.paged_attention_v1(
|
| 31 |
+
out,
|
| 32 |
+
query,
|
| 33 |
+
key_cache,
|
| 34 |
+
value_cache,
|
| 35 |
+
num_kv_heads,
|
| 36 |
+
scale,
|
| 37 |
+
block_tables,
|
| 38 |
+
seq_lens,
|
| 39 |
+
block_size,
|
| 40 |
+
max_seq_len,
|
| 41 |
+
alibi_slopes,
|
| 42 |
+
kv_cache_dtype,
|
| 43 |
+
k_scale,
|
| 44 |
+
v_scale,
|
| 45 |
+
tp_rank,
|
| 46 |
+
blocksparse_local_blocks,
|
| 47 |
+
blocksparse_vert_stride,
|
| 48 |
+
blocksparse_block_size,
|
| 49 |
+
blocksparse_head_sliding_step,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def paged_attention_v2(
|
| 54 |
+
out: torch.Tensor,
|
| 55 |
+
exp_sum: torch.Tensor,
|
| 56 |
+
max_logits: torch.Tensor,
|
| 57 |
+
tmp_out: torch.Tensor,
|
| 58 |
+
query: torch.Tensor,
|
| 59 |
+
key_cache: torch.Tensor,
|
| 60 |
+
value_cache: torch.Tensor,
|
| 61 |
+
num_kv_heads: int,
|
| 62 |
+
scale: float,
|
| 63 |
+
block_tables: torch.Tensor,
|
| 64 |
+
seq_lens: torch.Tensor,
|
| 65 |
+
block_size: int,
|
| 66 |
+
max_seq_len: int,
|
| 67 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 68 |
+
kv_cache_dtype: str,
|
| 69 |
+
k_scale: float,
|
| 70 |
+
v_scale: float,
|
| 71 |
+
tp_rank: int = 0,
|
| 72 |
+
blocksparse_local_blocks: int = 0,
|
| 73 |
+
blocksparse_vert_stride: int = 0,
|
| 74 |
+
blocksparse_block_size: int = 64,
|
| 75 |
+
blocksparse_head_sliding_step: int = 0,
|
| 76 |
+
) -> None:
|
| 77 |
+
ops.paged_attention_v2(
|
| 78 |
+
out,
|
| 79 |
+
exp_sum,
|
| 80 |
+
max_logits,
|
| 81 |
+
tmp_out,
|
| 82 |
+
query,
|
| 83 |
+
key_cache,
|
| 84 |
+
value_cache,
|
| 85 |
+
num_kv_heads,
|
| 86 |
+
scale,
|
| 87 |
+
block_tables,
|
| 88 |
+
seq_lens,
|
| 89 |
+
block_size,
|
| 90 |
+
max_seq_len,
|
| 91 |
+
alibi_slopes,
|
| 92 |
+
kv_cache_dtype,
|
| 93 |
+
k_scale,
|
| 94 |
+
v_scale,
|
| 95 |
+
tp_rank,
|
| 96 |
+
blocksparse_local_blocks,
|
| 97 |
+
blocksparse_vert_stride,
|
| 98 |
+
blocksparse_block_size,
|
| 99 |
+
blocksparse_head_sliding_step,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def reshape_and_cache(
|
| 104 |
+
key: torch.Tensor,
|
| 105 |
+
value: torch.Tensor,
|
| 106 |
+
key_cache: torch.Tensor,
|
| 107 |
+
value_cache: torch.Tensor,
|
| 108 |
+
slot_mapping: torch.Tensor,
|
| 109 |
+
kv_cache_dtype: str,
|
| 110 |
+
k_scale: float,
|
| 111 |
+
v_scale: float,
|
| 112 |
+
) -> None:
|
| 113 |
+
ops.reshape_and_cache(
|
| 114 |
+
key,
|
| 115 |
+
value,
|
| 116 |
+
key_cache,
|
| 117 |
+
value_cache,
|
| 118 |
+
slot_mapping,
|
| 119 |
+
kv_cache_dtype,
|
| 120 |
+
k_scale,
|
| 121 |
+
v_scale,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def reshape_and_cache_flash(
|
| 126 |
+
key: torch.Tensor,
|
| 127 |
+
value: torch.Tensor,
|
| 128 |
+
key_cache: torch.Tensor,
|
| 129 |
+
value_cache: torch.Tensor,
|
| 130 |
+
slot_mapping: torch.Tensor,
|
| 131 |
+
kv_cache_dtype: str,
|
| 132 |
+
k_scale: torch.Tensor,
|
| 133 |
+
v_scale: torch.Tensor,
|
| 134 |
+
) -> None:
|
| 135 |
+
ops.reshape_and_cache_flash(
|
| 136 |
+
key,
|
| 137 |
+
value,
|
| 138 |
+
key_cache,
|
| 139 |
+
value_cache,
|
| 140 |
+
slot_mapping,
|
| 141 |
+
kv_cache_dtype,
|
| 142 |
+
k_scale,
|
| 143 |
+
v_scale,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def copy_blocks(
|
| 148 |
+
key_caches: List[torch.Tensor],
|
| 149 |
+
value_caches: List[torch.Tensor],
|
| 150 |
+
block_mapping: torch.Tensor,
|
| 151 |
+
) -> None:
|
| 152 |
+
ops.copy_blocks(key_caches, value_caches, block_mapping)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def swap_blocks(
|
| 156 |
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
| 157 |
+
) -> None:
|
| 158 |
+
ops.swap_blocks(src, dst, block_mapping)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def convert_fp8(
|
| 162 |
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
| 163 |
+
) -> None:
|
| 164 |
+
ops.convert_fp8(output, input, scale, kv_dtype)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
__all__ = [
|
| 168 |
+
"convert_fp8",
|
| 169 |
+
"paged_attention_v1",
|
| 170 |
+
"paged_attention_v2",
|
| 171 |
+
"reshape_and_cache",
|
| 172 |
+
"copy_blocks",
|
| 173 |
+
]
|
build/torch28-cxx11-cu129-x86_64-linux/paged_attention/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _paged_attention_287831d
|
| 3 |
+
ops = torch.ops._paged_attention_287831d
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_paged_attention_287831d::{op_name}"
|
build/torch28-cxx11-cu129-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0bea4028251eaee2c98c67b9b20dbf575b49ab4c747bb31f6c8a06a0870ba969
|
| 3 |
+
size 111214600
|
build/torch28-cxx11-cu129-x86_64-linux/paged_attention/platforms.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from abc import ABC, abstractmethod
|
| 4 |
+
from functools import lru_cache, wraps
|
| 5 |
+
from typing import Callable, ParamSpec, TypeVar
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
IS_ROCM = torch.version.hip is not None
|
| 11 |
+
IS_MPS = torch.backends.mps.is_available()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Platform(ABC):
|
| 15 |
+
@classmethod
|
| 16 |
+
def seed_everything(cls, seed: int) -> None:
|
| 17 |
+
"""
|
| 18 |
+
Set the seed of each random module.
|
| 19 |
+
`torch.manual_seed` will set seed on all devices.
|
| 20 |
+
|
| 21 |
+
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
| 22 |
+
"""
|
| 23 |
+
random.seed(seed)
|
| 24 |
+
np.random.seed(seed)
|
| 25 |
+
torch.manual_seed(seed)
|
| 26 |
+
|
| 27 |
+
@abstractmethod
|
| 28 |
+
def get_device_name(self, device_id: int = 0) -> str: ...
|
| 29 |
+
|
| 30 |
+
@abstractmethod
|
| 31 |
+
def is_cuda(self) -> bool: ...
|
| 32 |
+
|
| 33 |
+
@abstractmethod
|
| 34 |
+
def is_rocm(self) -> bool: ...
|
| 35 |
+
|
| 36 |
+
@abstractmethod
|
| 37 |
+
def is_mps(self) -> bool: ...
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class CudaPlatform(Platform):
|
| 41 |
+
@classmethod
|
| 42 |
+
@lru_cache(maxsize=8)
|
| 43 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 44 |
+
return torch.cuda.get_device_name(0)
|
| 45 |
+
|
| 46 |
+
def is_cuda(self) -> bool:
|
| 47 |
+
return True
|
| 48 |
+
|
| 49 |
+
def is_rocm(self) -> bool:
|
| 50 |
+
return False
|
| 51 |
+
|
| 52 |
+
def is_mps(self) -> bool:
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class RocmPlatform(Platform):
|
| 57 |
+
@classmethod
|
| 58 |
+
@lru_cache(maxsize=8)
|
| 59 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 60 |
+
return torch.cuda.get_device_name(device_id)
|
| 61 |
+
|
| 62 |
+
def is_cuda(self) -> bool:
|
| 63 |
+
return False
|
| 64 |
+
|
| 65 |
+
def is_rocm(self) -> bool:
|
| 66 |
+
return True
|
| 67 |
+
|
| 68 |
+
def is_mps(self) -> bool:
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class MpsPlatform(Platform):
|
| 73 |
+
@classmethod
|
| 74 |
+
@lru_cache(maxsize=8)
|
| 75 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 76 |
+
return torch.cuda.get_device_name(device_id)
|
| 77 |
+
|
| 78 |
+
def is_cuda(self) -> bool:
|
| 79 |
+
return False
|
| 80 |
+
|
| 81 |
+
def is_rocm(self) -> bool:
|
| 82 |
+
return False
|
| 83 |
+
|
| 84 |
+
def is_mps(self) -> bool:
|
| 85 |
+
return True
|
| 86 |
+
|
| 87 |
+
current_platform = (
|
| 88 |
+
RocmPlatform() if IS_ROCM else
|
| 89 |
+
MpsPlatform() if IS_MPS else
|
| 90 |
+
CudaPlatform() if torch.cuda.is_available() else
|
| 91 |
+
None
|
| 92 |
+
)
|
build/torch28-cxx11-rocm63-x86_64-linux/paged_attention/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ._custom_ops import (
|
| 2 |
+
convert_fp8,
|
| 3 |
+
copy_blocks,
|
| 4 |
+
paged_attention_v1,
|
| 5 |
+
paged_attention_v2,
|
| 6 |
+
reshape_and_cache,
|
| 7 |
+
reshape_and_cache_flash,
|
| 8 |
+
swap_blocks,
|
| 9 |
+
)
|
| 10 |
+
from ._ops import ops
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
"convert_fp8",
|
| 14 |
+
"copy_blocks",
|
| 15 |
+
"ops",
|
| 16 |
+
"paged_attention_v1",
|
| 17 |
+
"paged_attention_v2",
|
| 18 |
+
"reshape_and_cache",
|
| 19 |
+
"reshape_and_cache_flash",
|
| 20 |
+
"swap_blocks",
|
| 21 |
+
]
|
build/torch28-cxx11-rocm63-x86_64-linux/paged_attention/_custom_ops.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# page attention ops
|
| 9 |
+
def paged_attention_v1(
|
| 10 |
+
out: torch.Tensor,
|
| 11 |
+
query: torch.Tensor,
|
| 12 |
+
key_cache: torch.Tensor,
|
| 13 |
+
value_cache: torch.Tensor,
|
| 14 |
+
num_kv_heads: int,
|
| 15 |
+
scale: float,
|
| 16 |
+
block_tables: torch.Tensor,
|
| 17 |
+
seq_lens: torch.Tensor,
|
| 18 |
+
block_size: int,
|
| 19 |
+
max_seq_len: int,
|
| 20 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 21 |
+
kv_cache_dtype: str,
|
| 22 |
+
k_scale: float,
|
| 23 |
+
v_scale: float,
|
| 24 |
+
tp_rank: int = 0,
|
| 25 |
+
blocksparse_local_blocks: int = 0,
|
| 26 |
+
blocksparse_vert_stride: int = 0,
|
| 27 |
+
blocksparse_block_size: int = 64,
|
| 28 |
+
blocksparse_head_sliding_step: int = 0,
|
| 29 |
+
) -> None:
|
| 30 |
+
ops.paged_attention_v1(
|
| 31 |
+
out,
|
| 32 |
+
query,
|
| 33 |
+
key_cache,
|
| 34 |
+
value_cache,
|
| 35 |
+
num_kv_heads,
|
| 36 |
+
scale,
|
| 37 |
+
block_tables,
|
| 38 |
+
seq_lens,
|
| 39 |
+
block_size,
|
| 40 |
+
max_seq_len,
|
| 41 |
+
alibi_slopes,
|
| 42 |
+
kv_cache_dtype,
|
| 43 |
+
k_scale,
|
| 44 |
+
v_scale,
|
| 45 |
+
tp_rank,
|
| 46 |
+
blocksparse_local_blocks,
|
| 47 |
+
blocksparse_vert_stride,
|
| 48 |
+
blocksparse_block_size,
|
| 49 |
+
blocksparse_head_sliding_step,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def paged_attention_v2(
|
| 54 |
+
out: torch.Tensor,
|
| 55 |
+
exp_sum: torch.Tensor,
|
| 56 |
+
max_logits: torch.Tensor,
|
| 57 |
+
tmp_out: torch.Tensor,
|
| 58 |
+
query: torch.Tensor,
|
| 59 |
+
key_cache: torch.Tensor,
|
| 60 |
+
value_cache: torch.Tensor,
|
| 61 |
+
num_kv_heads: int,
|
| 62 |
+
scale: float,
|
| 63 |
+
block_tables: torch.Tensor,
|
| 64 |
+
seq_lens: torch.Tensor,
|
| 65 |
+
block_size: int,
|
| 66 |
+
max_seq_len: int,
|
| 67 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 68 |
+
kv_cache_dtype: str,
|
| 69 |
+
k_scale: float,
|
| 70 |
+
v_scale: float,
|
| 71 |
+
tp_rank: int = 0,
|
| 72 |
+
blocksparse_local_blocks: int = 0,
|
| 73 |
+
blocksparse_vert_stride: int = 0,
|
| 74 |
+
blocksparse_block_size: int = 64,
|
| 75 |
+
blocksparse_head_sliding_step: int = 0,
|
| 76 |
+
) -> None:
|
| 77 |
+
ops.paged_attention_v2(
|
| 78 |
+
out,
|
| 79 |
+
exp_sum,
|
| 80 |
+
max_logits,
|
| 81 |
+
tmp_out,
|
| 82 |
+
query,
|
| 83 |
+
key_cache,
|
| 84 |
+
value_cache,
|
| 85 |
+
num_kv_heads,
|
| 86 |
+
scale,
|
| 87 |
+
block_tables,
|
| 88 |
+
seq_lens,
|
| 89 |
+
block_size,
|
| 90 |
+
max_seq_len,
|
| 91 |
+
alibi_slopes,
|
| 92 |
+
kv_cache_dtype,
|
| 93 |
+
k_scale,
|
| 94 |
+
v_scale,
|
| 95 |
+
tp_rank,
|
| 96 |
+
blocksparse_local_blocks,
|
| 97 |
+
blocksparse_vert_stride,
|
| 98 |
+
blocksparse_block_size,
|
| 99 |
+
blocksparse_head_sliding_step,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def reshape_and_cache(
|
| 104 |
+
key: torch.Tensor,
|
| 105 |
+
value: torch.Tensor,
|
| 106 |
+
key_cache: torch.Tensor,
|
| 107 |
+
value_cache: torch.Tensor,
|
| 108 |
+
slot_mapping: torch.Tensor,
|
| 109 |
+
kv_cache_dtype: str,
|
| 110 |
+
k_scale: float,
|
| 111 |
+
v_scale: float,
|
| 112 |
+
) -> None:
|
| 113 |
+
ops.reshape_and_cache(
|
| 114 |
+
key,
|
| 115 |
+
value,
|
| 116 |
+
key_cache,
|
| 117 |
+
value_cache,
|
| 118 |
+
slot_mapping,
|
| 119 |
+
kv_cache_dtype,
|
| 120 |
+
k_scale,
|
| 121 |
+
v_scale,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def reshape_and_cache_flash(
|
| 126 |
+
key: torch.Tensor,
|
| 127 |
+
value: torch.Tensor,
|
| 128 |
+
key_cache: torch.Tensor,
|
| 129 |
+
value_cache: torch.Tensor,
|
| 130 |
+
slot_mapping: torch.Tensor,
|
| 131 |
+
kv_cache_dtype: str,
|
| 132 |
+
k_scale: torch.Tensor,
|
| 133 |
+
v_scale: torch.Tensor,
|
| 134 |
+
) -> None:
|
| 135 |
+
ops.reshape_and_cache_flash(
|
| 136 |
+
key,
|
| 137 |
+
value,
|
| 138 |
+
key_cache,
|
| 139 |
+
value_cache,
|
| 140 |
+
slot_mapping,
|
| 141 |
+
kv_cache_dtype,
|
| 142 |
+
k_scale,
|
| 143 |
+
v_scale,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def copy_blocks(
|
| 148 |
+
key_caches: List[torch.Tensor],
|
| 149 |
+
value_caches: List[torch.Tensor],
|
| 150 |
+
block_mapping: torch.Tensor,
|
| 151 |
+
) -> None:
|
| 152 |
+
ops.copy_blocks(key_caches, value_caches, block_mapping)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def swap_blocks(
|
| 156 |
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
| 157 |
+
) -> None:
|
| 158 |
+
ops.swap_blocks(src, dst, block_mapping)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def convert_fp8(
|
| 162 |
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
| 163 |
+
) -> None:
|
| 164 |
+
ops.convert_fp8(output, input, scale, kv_dtype)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
__all__ = [
|
| 168 |
+
"convert_fp8",
|
| 169 |
+
"paged_attention_v1",
|
| 170 |
+
"paged_attention_v2",
|
| 171 |
+
"reshape_and_cache",
|
| 172 |
+
"copy_blocks",
|
| 173 |
+
]
|
build/torch28-cxx11-rocm63-x86_64-linux/paged_attention/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _paged_attention_287831d
|
| 3 |
+
ops = torch.ops._paged_attention_287831d
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_paged_attention_287831d::{op_name}"
|
build/torch28-cxx11-rocm63-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:52c29c39d300ade26ca567fe96db040df2bed151dd35adf24c74a41469fee54b
|
| 3 |
+
size 120179024
|
build/torch28-cxx11-rocm63-x86_64-linux/paged_attention/platforms.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from abc import ABC, abstractmethod
|
| 4 |
+
from functools import lru_cache, wraps
|
| 5 |
+
from typing import Callable, ParamSpec, TypeVar
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
IS_ROCM = torch.version.hip is not None
|
| 11 |
+
IS_MPS = torch.backends.mps.is_available()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Platform(ABC):
|
| 15 |
+
@classmethod
|
| 16 |
+
def seed_everything(cls, seed: int) -> None:
|
| 17 |
+
"""
|
| 18 |
+
Set the seed of each random module.
|
| 19 |
+
`torch.manual_seed` will set seed on all devices.
|
| 20 |
+
|
| 21 |
+
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
| 22 |
+
"""
|
| 23 |
+
random.seed(seed)
|
| 24 |
+
np.random.seed(seed)
|
| 25 |
+
torch.manual_seed(seed)
|
| 26 |
+
|
| 27 |
+
@abstractmethod
|
| 28 |
+
def get_device_name(self, device_id: int = 0) -> str: ...
|
| 29 |
+
|
| 30 |
+
@abstractmethod
|
| 31 |
+
def is_cuda(self) -> bool: ...
|
| 32 |
+
|
| 33 |
+
@abstractmethod
|
| 34 |
+
def is_rocm(self) -> bool: ...
|
| 35 |
+
|
| 36 |
+
@abstractmethod
|
| 37 |
+
def is_mps(self) -> bool: ...
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class CudaPlatform(Platform):
|
| 41 |
+
@classmethod
|
| 42 |
+
@lru_cache(maxsize=8)
|
| 43 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 44 |
+
return torch.cuda.get_device_name(0)
|
| 45 |
+
|
| 46 |
+
def is_cuda(self) -> bool:
|
| 47 |
+
return True
|
| 48 |
+
|
| 49 |
+
def is_rocm(self) -> bool:
|
| 50 |
+
return False
|
| 51 |
+
|
| 52 |
+
def is_mps(self) -> bool:
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class RocmPlatform(Platform):
|
| 57 |
+
@classmethod
|
| 58 |
+
@lru_cache(maxsize=8)
|
| 59 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 60 |
+
return torch.cuda.get_device_name(device_id)
|
| 61 |
+
|
| 62 |
+
def is_cuda(self) -> bool:
|
| 63 |
+
return False
|
| 64 |
+
|
| 65 |
+
def is_rocm(self) -> bool:
|
| 66 |
+
return True
|
| 67 |
+
|
| 68 |
+
def is_mps(self) -> bool:
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class MpsPlatform(Platform):
|
| 73 |
+
@classmethod
|
| 74 |
+
@lru_cache(maxsize=8)
|
| 75 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 76 |
+
return torch.cuda.get_device_name(device_id)
|
| 77 |
+
|
| 78 |
+
def is_cuda(self) -> bool:
|
| 79 |
+
return False
|
| 80 |
+
|
| 81 |
+
def is_rocm(self) -> bool:
|
| 82 |
+
return False
|
| 83 |
+
|
| 84 |
+
def is_mps(self) -> bool:
|
| 85 |
+
return True
|
| 86 |
+
|
| 87 |
+
current_platform = (
|
| 88 |
+
RocmPlatform() if IS_ROCM else
|
| 89 |
+
MpsPlatform() if IS_MPS else
|
| 90 |
+
CudaPlatform() if torch.cuda.is_available() else
|
| 91 |
+
None
|
| 92 |
+
)
|
build/torch28-cxx11-rocm64-x86_64-linux/paged_attention/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ._custom_ops import (
|
| 2 |
+
convert_fp8,
|
| 3 |
+
copy_blocks,
|
| 4 |
+
paged_attention_v1,
|
| 5 |
+
paged_attention_v2,
|
| 6 |
+
reshape_and_cache,
|
| 7 |
+
reshape_and_cache_flash,
|
| 8 |
+
swap_blocks,
|
| 9 |
+
)
|
| 10 |
+
from ._ops import ops
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
"convert_fp8",
|
| 14 |
+
"copy_blocks",
|
| 15 |
+
"ops",
|
| 16 |
+
"paged_attention_v1",
|
| 17 |
+
"paged_attention_v2",
|
| 18 |
+
"reshape_and_cache",
|
| 19 |
+
"reshape_and_cache_flash",
|
| 20 |
+
"swap_blocks",
|
| 21 |
+
]
|
build/torch28-cxx11-rocm64-x86_64-linux/paged_attention/_custom_ops.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# page attention ops
|
| 9 |
+
def paged_attention_v1(
|
| 10 |
+
out: torch.Tensor,
|
| 11 |
+
query: torch.Tensor,
|
| 12 |
+
key_cache: torch.Tensor,
|
| 13 |
+
value_cache: torch.Tensor,
|
| 14 |
+
num_kv_heads: int,
|
| 15 |
+
scale: float,
|
| 16 |
+
block_tables: torch.Tensor,
|
| 17 |
+
seq_lens: torch.Tensor,
|
| 18 |
+
block_size: int,
|
| 19 |
+
max_seq_len: int,
|
| 20 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 21 |
+
kv_cache_dtype: str,
|
| 22 |
+
k_scale: float,
|
| 23 |
+
v_scale: float,
|
| 24 |
+
tp_rank: int = 0,
|
| 25 |
+
blocksparse_local_blocks: int = 0,
|
| 26 |
+
blocksparse_vert_stride: int = 0,
|
| 27 |
+
blocksparse_block_size: int = 64,
|
| 28 |
+
blocksparse_head_sliding_step: int = 0,
|
| 29 |
+
) -> None:
|
| 30 |
+
ops.paged_attention_v1(
|
| 31 |
+
out,
|
| 32 |
+
query,
|
| 33 |
+
key_cache,
|
| 34 |
+
value_cache,
|
| 35 |
+
num_kv_heads,
|
| 36 |
+
scale,
|
| 37 |
+
block_tables,
|
| 38 |
+
seq_lens,
|
| 39 |
+
block_size,
|
| 40 |
+
max_seq_len,
|
| 41 |
+
alibi_slopes,
|
| 42 |
+
kv_cache_dtype,
|
| 43 |
+
k_scale,
|
| 44 |
+
v_scale,
|
| 45 |
+
tp_rank,
|
| 46 |
+
blocksparse_local_blocks,
|
| 47 |
+
blocksparse_vert_stride,
|
| 48 |
+
blocksparse_block_size,
|
| 49 |
+
blocksparse_head_sliding_step,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def paged_attention_v2(
|
| 54 |
+
out: torch.Tensor,
|
| 55 |
+
exp_sum: torch.Tensor,
|
| 56 |
+
max_logits: torch.Tensor,
|
| 57 |
+
tmp_out: torch.Tensor,
|
| 58 |
+
query: torch.Tensor,
|
| 59 |
+
key_cache: torch.Tensor,
|
| 60 |
+
value_cache: torch.Tensor,
|
| 61 |
+
num_kv_heads: int,
|
| 62 |
+
scale: float,
|
| 63 |
+
block_tables: torch.Tensor,
|
| 64 |
+
seq_lens: torch.Tensor,
|
| 65 |
+
block_size: int,
|
| 66 |
+
max_seq_len: int,
|
| 67 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 68 |
+
kv_cache_dtype: str,
|
| 69 |
+
k_scale: float,
|
| 70 |
+
v_scale: float,
|
| 71 |
+
tp_rank: int = 0,
|
| 72 |
+
blocksparse_local_blocks: int = 0,
|
| 73 |
+
blocksparse_vert_stride: int = 0,
|
| 74 |
+
blocksparse_block_size: int = 64,
|
| 75 |
+
blocksparse_head_sliding_step: int = 0,
|
| 76 |
+
) -> None:
|
| 77 |
+
ops.paged_attention_v2(
|
| 78 |
+
out,
|
| 79 |
+
exp_sum,
|
| 80 |
+
max_logits,
|
| 81 |
+
tmp_out,
|
| 82 |
+
query,
|
| 83 |
+
key_cache,
|
| 84 |
+
value_cache,
|
| 85 |
+
num_kv_heads,
|
| 86 |
+
scale,
|
| 87 |
+
block_tables,
|
| 88 |
+
seq_lens,
|
| 89 |
+
block_size,
|
| 90 |
+
max_seq_len,
|
| 91 |
+
alibi_slopes,
|
| 92 |
+
kv_cache_dtype,
|
| 93 |
+
k_scale,
|
| 94 |
+
v_scale,
|
| 95 |
+
tp_rank,
|
| 96 |
+
blocksparse_local_blocks,
|
| 97 |
+
blocksparse_vert_stride,
|
| 98 |
+
blocksparse_block_size,
|
| 99 |
+
blocksparse_head_sliding_step,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def reshape_and_cache(
|
| 104 |
+
key: torch.Tensor,
|
| 105 |
+
value: torch.Tensor,
|
| 106 |
+
key_cache: torch.Tensor,
|
| 107 |
+
value_cache: torch.Tensor,
|
| 108 |
+
slot_mapping: torch.Tensor,
|
| 109 |
+
kv_cache_dtype: str,
|
| 110 |
+
k_scale: float,
|
| 111 |
+
v_scale: float,
|
| 112 |
+
) -> None:
|
| 113 |
+
ops.reshape_and_cache(
|
| 114 |
+
key,
|
| 115 |
+
value,
|
| 116 |
+
key_cache,
|
| 117 |
+
value_cache,
|
| 118 |
+
slot_mapping,
|
| 119 |
+
kv_cache_dtype,
|
| 120 |
+
k_scale,
|
| 121 |
+
v_scale,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def reshape_and_cache_flash(
|
| 126 |
+
key: torch.Tensor,
|
| 127 |
+
value: torch.Tensor,
|
| 128 |
+
key_cache: torch.Tensor,
|
| 129 |
+
value_cache: torch.Tensor,
|
| 130 |
+
slot_mapping: torch.Tensor,
|
| 131 |
+
kv_cache_dtype: str,
|
| 132 |
+
k_scale: torch.Tensor,
|
| 133 |
+
v_scale: torch.Tensor,
|
| 134 |
+
) -> None:
|
| 135 |
+
ops.reshape_and_cache_flash(
|
| 136 |
+
key,
|
| 137 |
+
value,
|
| 138 |
+
key_cache,
|
| 139 |
+
value_cache,
|
| 140 |
+
slot_mapping,
|
| 141 |
+
kv_cache_dtype,
|
| 142 |
+
k_scale,
|
| 143 |
+
v_scale,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def copy_blocks(
|
| 148 |
+
key_caches: List[torch.Tensor],
|
| 149 |
+
value_caches: List[torch.Tensor],
|
| 150 |
+
block_mapping: torch.Tensor,
|
| 151 |
+
) -> None:
|
| 152 |
+
ops.copy_blocks(key_caches, value_caches, block_mapping)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def swap_blocks(
|
| 156 |
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
| 157 |
+
) -> None:
|
| 158 |
+
ops.swap_blocks(src, dst, block_mapping)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def convert_fp8(
|
| 162 |
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
| 163 |
+
) -> None:
|
| 164 |
+
ops.convert_fp8(output, input, scale, kv_dtype)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
__all__ = [
|
| 168 |
+
"convert_fp8",
|
| 169 |
+
"paged_attention_v1",
|
| 170 |
+
"paged_attention_v2",
|
| 171 |
+
"reshape_and_cache",
|
| 172 |
+
"copy_blocks",
|
| 173 |
+
]
|
build/torch28-cxx11-rocm64-x86_64-linux/paged_attention/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _paged_attention_287831d
|
| 3 |
+
ops = torch.ops._paged_attention_287831d
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_paged_attention_287831d::{op_name}"
|
build/torch28-cxx11-rocm64-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3ef6061f268d5e65216889615ed121e438d29c93ddaffef959b3c66d5219bb55
|
| 3 |
+
size 121012632
|
build/torch28-cxx11-rocm64-x86_64-linux/paged_attention/platforms.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from abc import ABC, abstractmethod
|
| 4 |
+
from functools import lru_cache, wraps
|
| 5 |
+
from typing import Callable, ParamSpec, TypeVar
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
IS_ROCM = torch.version.hip is not None
|
| 11 |
+
IS_MPS = torch.backends.mps.is_available()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Platform(ABC):
|
| 15 |
+
@classmethod
|
| 16 |
+
def seed_everything(cls, seed: int) -> None:
|
| 17 |
+
"""
|
| 18 |
+
Set the seed of each random module.
|
| 19 |
+
`torch.manual_seed` will set seed on all devices.
|
| 20 |
+
|
| 21 |
+
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
| 22 |
+
"""
|
| 23 |
+
random.seed(seed)
|
| 24 |
+
np.random.seed(seed)
|
| 25 |
+
torch.manual_seed(seed)
|
| 26 |
+
|
| 27 |
+
@abstractmethod
|
| 28 |
+
def get_device_name(self, device_id: int = 0) -> str: ...
|
| 29 |
+
|
| 30 |
+
@abstractmethod
|
| 31 |
+
def is_cuda(self) -> bool: ...
|
| 32 |
+
|
| 33 |
+
@abstractmethod
|
| 34 |
+
def is_rocm(self) -> bool: ...
|
| 35 |
+
|
| 36 |
+
@abstractmethod
|
| 37 |
+
def is_mps(self) -> bool: ...
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class CudaPlatform(Platform):
|
| 41 |
+
@classmethod
|
| 42 |
+
@lru_cache(maxsize=8)
|
| 43 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 44 |
+
return torch.cuda.get_device_name(0)
|
| 45 |
+
|
| 46 |
+
def is_cuda(self) -> bool:
|
| 47 |
+
return True
|
| 48 |
+
|
| 49 |
+
def is_rocm(self) -> bool:
|
| 50 |
+
return False
|
| 51 |
+
|
| 52 |
+
def is_mps(self) -> bool:
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class RocmPlatform(Platform):
|
| 57 |
+
@classmethod
|
| 58 |
+
@lru_cache(maxsize=8)
|
| 59 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 60 |
+
return torch.cuda.get_device_name(device_id)
|
| 61 |
+
|
| 62 |
+
def is_cuda(self) -> bool:
|
| 63 |
+
return False
|
| 64 |
+
|
| 65 |
+
def is_rocm(self) -> bool:
|
| 66 |
+
return True
|
| 67 |
+
|
| 68 |
+
def is_mps(self) -> bool:
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class MpsPlatform(Platform):
|
| 73 |
+
@classmethod
|
| 74 |
+
@lru_cache(maxsize=8)
|
| 75 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 76 |
+
return torch.cuda.get_device_name(device_id)
|
| 77 |
+
|
| 78 |
+
def is_cuda(self) -> bool:
|
| 79 |
+
return False
|
| 80 |
+
|
| 81 |
+
def is_rocm(self) -> bool:
|
| 82 |
+
return False
|
| 83 |
+
|
| 84 |
+
def is_mps(self) -> bool:
|
| 85 |
+
return True
|
| 86 |
+
|
| 87 |
+
current_platform = (
|
| 88 |
+
RocmPlatform() if IS_ROCM else
|
| 89 |
+
MpsPlatform() if IS_MPS else
|
| 90 |
+
CudaPlatform() if torch.cuda.is_available() else
|
| 91 |
+
None
|
| 92 |
+
)
|
build/torch29-cxx11-cu126-x86_64-linux/paged_attention/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ._custom_ops import (
|
| 2 |
+
convert_fp8,
|
| 3 |
+
copy_blocks,
|
| 4 |
+
paged_attention_v1,
|
| 5 |
+
paged_attention_v2,
|
| 6 |
+
reshape_and_cache,
|
| 7 |
+
reshape_and_cache_flash,
|
| 8 |
+
swap_blocks,
|
| 9 |
+
)
|
| 10 |
+
from ._ops import ops
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
"convert_fp8",
|
| 14 |
+
"copy_blocks",
|
| 15 |
+
"ops",
|
| 16 |
+
"paged_attention_v1",
|
| 17 |
+
"paged_attention_v2",
|
| 18 |
+
"reshape_and_cache",
|
| 19 |
+
"reshape_and_cache_flash",
|
| 20 |
+
"swap_blocks",
|
| 21 |
+
]
|
build/torch29-cxx11-cu126-x86_64-linux/paged_attention/_custom_ops.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# page attention ops
|
| 9 |
+
def paged_attention_v1(
|
| 10 |
+
out: torch.Tensor,
|
| 11 |
+
query: torch.Tensor,
|
| 12 |
+
key_cache: torch.Tensor,
|
| 13 |
+
value_cache: torch.Tensor,
|
| 14 |
+
num_kv_heads: int,
|
| 15 |
+
scale: float,
|
| 16 |
+
block_tables: torch.Tensor,
|
| 17 |
+
seq_lens: torch.Tensor,
|
| 18 |
+
block_size: int,
|
| 19 |
+
max_seq_len: int,
|
| 20 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 21 |
+
kv_cache_dtype: str,
|
| 22 |
+
k_scale: float,
|
| 23 |
+
v_scale: float,
|
| 24 |
+
tp_rank: int = 0,
|
| 25 |
+
blocksparse_local_blocks: int = 0,
|
| 26 |
+
blocksparse_vert_stride: int = 0,
|
| 27 |
+
blocksparse_block_size: int = 64,
|
| 28 |
+
blocksparse_head_sliding_step: int = 0,
|
| 29 |
+
) -> None:
|
| 30 |
+
ops.paged_attention_v1(
|
| 31 |
+
out,
|
| 32 |
+
query,
|
| 33 |
+
key_cache,
|
| 34 |
+
value_cache,
|
| 35 |
+
num_kv_heads,
|
| 36 |
+
scale,
|
| 37 |
+
block_tables,
|
| 38 |
+
seq_lens,
|
| 39 |
+
block_size,
|
| 40 |
+
max_seq_len,
|
| 41 |
+
alibi_slopes,
|
| 42 |
+
kv_cache_dtype,
|
| 43 |
+
k_scale,
|
| 44 |
+
v_scale,
|
| 45 |
+
tp_rank,
|
| 46 |
+
blocksparse_local_blocks,
|
| 47 |
+
blocksparse_vert_stride,
|
| 48 |
+
blocksparse_block_size,
|
| 49 |
+
blocksparse_head_sliding_step,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def paged_attention_v2(
|
| 54 |
+
out: torch.Tensor,
|
| 55 |
+
exp_sum: torch.Tensor,
|
| 56 |
+
max_logits: torch.Tensor,
|
| 57 |
+
tmp_out: torch.Tensor,
|
| 58 |
+
query: torch.Tensor,
|
| 59 |
+
key_cache: torch.Tensor,
|
| 60 |
+
value_cache: torch.Tensor,
|
| 61 |
+
num_kv_heads: int,
|
| 62 |
+
scale: float,
|
| 63 |
+
block_tables: torch.Tensor,
|
| 64 |
+
seq_lens: torch.Tensor,
|
| 65 |
+
block_size: int,
|
| 66 |
+
max_seq_len: int,
|
| 67 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 68 |
+
kv_cache_dtype: str,
|
| 69 |
+
k_scale: float,
|
| 70 |
+
v_scale: float,
|
| 71 |
+
tp_rank: int = 0,
|
| 72 |
+
blocksparse_local_blocks: int = 0,
|
| 73 |
+
blocksparse_vert_stride: int = 0,
|
| 74 |
+
blocksparse_block_size: int = 64,
|
| 75 |
+
blocksparse_head_sliding_step: int = 0,
|
| 76 |
+
) -> None:
|
| 77 |
+
ops.paged_attention_v2(
|
| 78 |
+
out,
|
| 79 |
+
exp_sum,
|
| 80 |
+
max_logits,
|
| 81 |
+
tmp_out,
|
| 82 |
+
query,
|
| 83 |
+
key_cache,
|
| 84 |
+
value_cache,
|
| 85 |
+
num_kv_heads,
|
| 86 |
+
scale,
|
| 87 |
+
block_tables,
|
| 88 |
+
seq_lens,
|
| 89 |
+
block_size,
|
| 90 |
+
max_seq_len,
|
| 91 |
+
alibi_slopes,
|
| 92 |
+
kv_cache_dtype,
|
| 93 |
+
k_scale,
|
| 94 |
+
v_scale,
|
| 95 |
+
tp_rank,
|
| 96 |
+
blocksparse_local_blocks,
|
| 97 |
+
blocksparse_vert_stride,
|
| 98 |
+
blocksparse_block_size,
|
| 99 |
+
blocksparse_head_sliding_step,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def reshape_and_cache(
|
| 104 |
+
key: torch.Tensor,
|
| 105 |
+
value: torch.Tensor,
|
| 106 |
+
key_cache: torch.Tensor,
|
| 107 |
+
value_cache: torch.Tensor,
|
| 108 |
+
slot_mapping: torch.Tensor,
|
| 109 |
+
kv_cache_dtype: str,
|
| 110 |
+
k_scale: float,
|
| 111 |
+
v_scale: float,
|
| 112 |
+
) -> None:
|
| 113 |
+
ops.reshape_and_cache(
|
| 114 |
+
key,
|
| 115 |
+
value,
|
| 116 |
+
key_cache,
|
| 117 |
+
value_cache,
|
| 118 |
+
slot_mapping,
|
| 119 |
+
kv_cache_dtype,
|
| 120 |
+
k_scale,
|
| 121 |
+
v_scale,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def reshape_and_cache_flash(
|
| 126 |
+
key: torch.Tensor,
|
| 127 |
+
value: torch.Tensor,
|
| 128 |
+
key_cache: torch.Tensor,
|
| 129 |
+
value_cache: torch.Tensor,
|
| 130 |
+
slot_mapping: torch.Tensor,
|
| 131 |
+
kv_cache_dtype: str,
|
| 132 |
+
k_scale: torch.Tensor,
|
| 133 |
+
v_scale: torch.Tensor,
|
| 134 |
+
) -> None:
|
| 135 |
+
ops.reshape_and_cache_flash(
|
| 136 |
+
key,
|
| 137 |
+
value,
|
| 138 |
+
key_cache,
|
| 139 |
+
value_cache,
|
| 140 |
+
slot_mapping,
|
| 141 |
+
kv_cache_dtype,
|
| 142 |
+
k_scale,
|
| 143 |
+
v_scale,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def copy_blocks(
|
| 148 |
+
key_caches: List[torch.Tensor],
|
| 149 |
+
value_caches: List[torch.Tensor],
|
| 150 |
+
block_mapping: torch.Tensor,
|
| 151 |
+
) -> None:
|
| 152 |
+
ops.copy_blocks(key_caches, value_caches, block_mapping)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def swap_blocks(
|
| 156 |
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
| 157 |
+
) -> None:
|
| 158 |
+
ops.swap_blocks(src, dst, block_mapping)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def convert_fp8(
|
| 162 |
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
| 163 |
+
) -> None:
|
| 164 |
+
ops.convert_fp8(output, input, scale, kv_dtype)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
__all__ = [
|
| 168 |
+
"convert_fp8",
|
| 169 |
+
"paged_attention_v1",
|
| 170 |
+
"paged_attention_v2",
|
| 171 |
+
"reshape_and_cache",
|
| 172 |
+
"copy_blocks",
|
| 173 |
+
]
|
build/torch29-cxx11-cu126-x86_64-linux/paged_attention/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _paged_attention_287831d
|
| 3 |
+
ops = torch.ops._paged_attention_287831d
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_paged_attention_287831d::{op_name}"
|
build/torch29-cxx11-cu126-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cf84af5418afac998537d6c01c88ad3bd083fa1912a1c90ae70809196cb0cc45
|
| 3 |
+
size 85751704
|
build/torch29-cxx11-cu126-x86_64-linux/paged_attention/platforms.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from abc import ABC, abstractmethod
|
| 4 |
+
from functools import lru_cache, wraps
|
| 5 |
+
from typing import Callable, ParamSpec, TypeVar
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
IS_ROCM = torch.version.hip is not None
|
| 11 |
+
IS_MPS = torch.backends.mps.is_available()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Platform(ABC):
|
| 15 |
+
@classmethod
|
| 16 |
+
def seed_everything(cls, seed: int) -> None:
|
| 17 |
+
"""
|
| 18 |
+
Set the seed of each random module.
|
| 19 |
+
`torch.manual_seed` will set seed on all devices.
|
| 20 |
+
|
| 21 |
+
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
| 22 |
+
"""
|
| 23 |
+
random.seed(seed)
|
| 24 |
+
np.random.seed(seed)
|
| 25 |
+
torch.manual_seed(seed)
|
| 26 |
+
|
| 27 |
+
@abstractmethod
|
| 28 |
+
def get_device_name(self, device_id: int = 0) -> str: ...
|
| 29 |
+
|
| 30 |
+
@abstractmethod
|
| 31 |
+
def is_cuda(self) -> bool: ...
|
| 32 |
+
|
| 33 |
+
@abstractmethod
|
| 34 |
+
def is_rocm(self) -> bool: ...
|
| 35 |
+
|
| 36 |
+
@abstractmethod
|
| 37 |
+
def is_mps(self) -> bool: ...
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class CudaPlatform(Platform):
|
| 41 |
+
@classmethod
|
| 42 |
+
@lru_cache(maxsize=8)
|
| 43 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 44 |
+
return torch.cuda.get_device_name(0)
|
| 45 |
+
|
| 46 |
+
def is_cuda(self) -> bool:
|
| 47 |
+
return True
|
| 48 |
+
|
| 49 |
+
def is_rocm(self) -> bool:
|
| 50 |
+
return False
|
| 51 |
+
|
| 52 |
+
def is_mps(self) -> bool:
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class RocmPlatform(Platform):
|
| 57 |
+
@classmethod
|
| 58 |
+
@lru_cache(maxsize=8)
|
| 59 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 60 |
+
return torch.cuda.get_device_name(device_id)
|
| 61 |
+
|
| 62 |
+
def is_cuda(self) -> bool:
|
| 63 |
+
return False
|
| 64 |
+
|
| 65 |
+
def is_rocm(self) -> bool:
|
| 66 |
+
return True
|
| 67 |
+
|
| 68 |
+
def is_mps(self) -> bool:
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class MpsPlatform(Platform):
|
| 73 |
+
@classmethod
|
| 74 |
+
@lru_cache(maxsize=8)
|
| 75 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 76 |
+
return torch.cuda.get_device_name(device_id)
|
| 77 |
+
|
| 78 |
+
def is_cuda(self) -> bool:
|
| 79 |
+
return False
|
| 80 |
+
|
| 81 |
+
def is_rocm(self) -> bool:
|
| 82 |
+
return False
|
| 83 |
+
|
| 84 |
+
def is_mps(self) -> bool:
|
| 85 |
+
return True
|
| 86 |
+
|
| 87 |
+
current_platform = (
|
| 88 |
+
RocmPlatform() if IS_ROCM else
|
| 89 |
+
MpsPlatform() if IS_MPS else
|
| 90 |
+
CudaPlatform() if torch.cuda.is_available() else
|
| 91 |
+
None
|
| 92 |
+
)
|
build/torch29-cxx11-cu128-x86_64-linux/paged_attention/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ._custom_ops import (
|
| 2 |
+
convert_fp8,
|
| 3 |
+
copy_blocks,
|
| 4 |
+
paged_attention_v1,
|
| 5 |
+
paged_attention_v2,
|
| 6 |
+
reshape_and_cache,
|
| 7 |
+
reshape_and_cache_flash,
|
| 8 |
+
swap_blocks,
|
| 9 |
+
)
|
| 10 |
+
from ._ops import ops
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
"convert_fp8",
|
| 14 |
+
"copy_blocks",
|
| 15 |
+
"ops",
|
| 16 |
+
"paged_attention_v1",
|
| 17 |
+
"paged_attention_v2",
|
| 18 |
+
"reshape_and_cache",
|
| 19 |
+
"reshape_and_cache_flash",
|
| 20 |
+
"swap_blocks",
|
| 21 |
+
]
|
build/torch29-cxx11-cu128-x86_64-linux/paged_attention/_custom_ops.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# page attention ops
|
| 9 |
+
def paged_attention_v1(
|
| 10 |
+
out: torch.Tensor,
|
| 11 |
+
query: torch.Tensor,
|
| 12 |
+
key_cache: torch.Tensor,
|
| 13 |
+
value_cache: torch.Tensor,
|
| 14 |
+
num_kv_heads: int,
|
| 15 |
+
scale: float,
|
| 16 |
+
block_tables: torch.Tensor,
|
| 17 |
+
seq_lens: torch.Tensor,
|
| 18 |
+
block_size: int,
|
| 19 |
+
max_seq_len: int,
|
| 20 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 21 |
+
kv_cache_dtype: str,
|
| 22 |
+
k_scale: float,
|
| 23 |
+
v_scale: float,
|
| 24 |
+
tp_rank: int = 0,
|
| 25 |
+
blocksparse_local_blocks: int = 0,
|
| 26 |
+
blocksparse_vert_stride: int = 0,
|
| 27 |
+
blocksparse_block_size: int = 64,
|
| 28 |
+
blocksparse_head_sliding_step: int = 0,
|
| 29 |
+
) -> None:
|
| 30 |
+
ops.paged_attention_v1(
|
| 31 |
+
out,
|
| 32 |
+
query,
|
| 33 |
+
key_cache,
|
| 34 |
+
value_cache,
|
| 35 |
+
num_kv_heads,
|
| 36 |
+
scale,
|
| 37 |
+
block_tables,
|
| 38 |
+
seq_lens,
|
| 39 |
+
block_size,
|
| 40 |
+
max_seq_len,
|
| 41 |
+
alibi_slopes,
|
| 42 |
+
kv_cache_dtype,
|
| 43 |
+
k_scale,
|
| 44 |
+
v_scale,
|
| 45 |
+
tp_rank,
|
| 46 |
+
blocksparse_local_blocks,
|
| 47 |
+
blocksparse_vert_stride,
|
| 48 |
+
blocksparse_block_size,
|
| 49 |
+
blocksparse_head_sliding_step,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def paged_attention_v2(
|
| 54 |
+
out: torch.Tensor,
|
| 55 |
+
exp_sum: torch.Tensor,
|
| 56 |
+
max_logits: torch.Tensor,
|
| 57 |
+
tmp_out: torch.Tensor,
|
| 58 |
+
query: torch.Tensor,
|
| 59 |
+
key_cache: torch.Tensor,
|
| 60 |
+
value_cache: torch.Tensor,
|
| 61 |
+
num_kv_heads: int,
|
| 62 |
+
scale: float,
|
| 63 |
+
block_tables: torch.Tensor,
|
| 64 |
+
seq_lens: torch.Tensor,
|
| 65 |
+
block_size: int,
|
| 66 |
+
max_seq_len: int,
|
| 67 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 68 |
+
kv_cache_dtype: str,
|
| 69 |
+
k_scale: float,
|
| 70 |
+
v_scale: float,
|
| 71 |
+
tp_rank: int = 0,
|
| 72 |
+
blocksparse_local_blocks: int = 0,
|
| 73 |
+
blocksparse_vert_stride: int = 0,
|
| 74 |
+
blocksparse_block_size: int = 64,
|
| 75 |
+
blocksparse_head_sliding_step: int = 0,
|
| 76 |
+
) -> None:
|
| 77 |
+
ops.paged_attention_v2(
|
| 78 |
+
out,
|
| 79 |
+
exp_sum,
|
| 80 |
+
max_logits,
|
| 81 |
+
tmp_out,
|
| 82 |
+
query,
|
| 83 |
+
key_cache,
|
| 84 |
+
value_cache,
|
| 85 |
+
num_kv_heads,
|
| 86 |
+
scale,
|
| 87 |
+
block_tables,
|
| 88 |
+
seq_lens,
|
| 89 |
+
block_size,
|
| 90 |
+
max_seq_len,
|
| 91 |
+
alibi_slopes,
|
| 92 |
+
kv_cache_dtype,
|
| 93 |
+
k_scale,
|
| 94 |
+
v_scale,
|
| 95 |
+
tp_rank,
|
| 96 |
+
blocksparse_local_blocks,
|
| 97 |
+
blocksparse_vert_stride,
|
| 98 |
+
blocksparse_block_size,
|
| 99 |
+
blocksparse_head_sliding_step,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def reshape_and_cache(
|
| 104 |
+
key: torch.Tensor,
|
| 105 |
+
value: torch.Tensor,
|
| 106 |
+
key_cache: torch.Tensor,
|
| 107 |
+
value_cache: torch.Tensor,
|
| 108 |
+
slot_mapping: torch.Tensor,
|
| 109 |
+
kv_cache_dtype: str,
|
| 110 |
+
k_scale: float,
|
| 111 |
+
v_scale: float,
|
| 112 |
+
) -> None:
|
| 113 |
+
ops.reshape_and_cache(
|
| 114 |
+
key,
|
| 115 |
+
value,
|
| 116 |
+
key_cache,
|
| 117 |
+
value_cache,
|
| 118 |
+
slot_mapping,
|
| 119 |
+
kv_cache_dtype,
|
| 120 |
+
k_scale,
|
| 121 |
+
v_scale,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def reshape_and_cache_flash(
|
| 126 |
+
key: torch.Tensor,
|
| 127 |
+
value: torch.Tensor,
|
| 128 |
+
key_cache: torch.Tensor,
|
| 129 |
+
value_cache: torch.Tensor,
|
| 130 |
+
slot_mapping: torch.Tensor,
|
| 131 |
+
kv_cache_dtype: str,
|
| 132 |
+
k_scale: torch.Tensor,
|
| 133 |
+
v_scale: torch.Tensor,
|
| 134 |
+
) -> None:
|
| 135 |
+
ops.reshape_and_cache_flash(
|
| 136 |
+
key,
|
| 137 |
+
value,
|
| 138 |
+
key_cache,
|
| 139 |
+
value_cache,
|
| 140 |
+
slot_mapping,
|
| 141 |
+
kv_cache_dtype,
|
| 142 |
+
k_scale,
|
| 143 |
+
v_scale,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def copy_blocks(
|
| 148 |
+
key_caches: List[torch.Tensor],
|
| 149 |
+
value_caches: List[torch.Tensor],
|
| 150 |
+
block_mapping: torch.Tensor,
|
| 151 |
+
) -> None:
|
| 152 |
+
ops.copy_blocks(key_caches, value_caches, block_mapping)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def swap_blocks(
|
| 156 |
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
| 157 |
+
) -> None:
|
| 158 |
+
ops.swap_blocks(src, dst, block_mapping)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def convert_fp8(
|
| 162 |
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
| 163 |
+
) -> None:
|
| 164 |
+
ops.convert_fp8(output, input, scale, kv_dtype)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
__all__ = [
|
| 168 |
+
"convert_fp8",
|
| 169 |
+
"paged_attention_v1",
|
| 170 |
+
"paged_attention_v2",
|
| 171 |
+
"reshape_and_cache",
|
| 172 |
+
"copy_blocks",
|
| 173 |
+
]
|
build/torch29-cxx11-cu128-x86_64-linux/paged_attention/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _paged_attention_287831d
|
| 3 |
+
ops = torch.ops._paged_attention_287831d
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_paged_attention_287831d::{op_name}"
|
build/torch29-cxx11-cu128-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:39a0b3ae487a77fd16fae849a19f4c542a7ca8b8d423a64e32692e77b036eee6
|
| 3 |
+
size 102693928
|
build/torch29-cxx11-cu128-x86_64-linux/paged_attention/platforms.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from abc import ABC, abstractmethod
|
| 4 |
+
from functools import lru_cache, wraps
|
| 5 |
+
from typing import Callable, ParamSpec, TypeVar
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
IS_ROCM = torch.version.hip is not None
|
| 11 |
+
IS_MPS = torch.backends.mps.is_available()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Platform(ABC):
|
| 15 |
+
@classmethod
|
| 16 |
+
def seed_everything(cls, seed: int) -> None:
|
| 17 |
+
"""
|
| 18 |
+
Set the seed of each random module.
|
| 19 |
+
`torch.manual_seed` will set seed on all devices.
|
| 20 |
+
|
| 21 |
+
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
| 22 |
+
"""
|
| 23 |
+
random.seed(seed)
|
| 24 |
+
np.random.seed(seed)
|
| 25 |
+
torch.manual_seed(seed)
|
| 26 |
+
|
| 27 |
+
@abstractmethod
|
| 28 |
+
def get_device_name(self, device_id: int = 0) -> str: ...
|
| 29 |
+
|
| 30 |
+
@abstractmethod
|
| 31 |
+
def is_cuda(self) -> bool: ...
|
| 32 |
+
|
| 33 |
+
@abstractmethod
|
| 34 |
+
def is_rocm(self) -> bool: ...
|
| 35 |
+
|
| 36 |
+
@abstractmethod
|
| 37 |
+
def is_mps(self) -> bool: ...
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class CudaPlatform(Platform):
|
| 41 |
+
@classmethod
|
| 42 |
+
@lru_cache(maxsize=8)
|
| 43 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 44 |
+
return torch.cuda.get_device_name(0)
|
| 45 |
+
|
| 46 |
+
def is_cuda(self) -> bool:
|
| 47 |
+
return True
|
| 48 |
+
|
| 49 |
+
def is_rocm(self) -> bool:
|
| 50 |
+
return False
|
| 51 |
+
|
| 52 |
+
def is_mps(self) -> bool:
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class RocmPlatform(Platform):
|
| 57 |
+
@classmethod
|
| 58 |
+
@lru_cache(maxsize=8)
|
| 59 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 60 |
+
return torch.cuda.get_device_name(device_id)
|
| 61 |
+
|
| 62 |
+
def is_cuda(self) -> bool:
|
| 63 |
+
return False
|
| 64 |
+
|
| 65 |
+
def is_rocm(self) -> bool:
|
| 66 |
+
return True
|
| 67 |
+
|
| 68 |
+
def is_mps(self) -> bool:
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class MpsPlatform(Platform):
|
| 73 |
+
@classmethod
|
| 74 |
+
@lru_cache(maxsize=8)
|
| 75 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 76 |
+
return torch.cuda.get_device_name(device_id)
|
| 77 |
+
|
| 78 |
+
def is_cuda(self) -> bool:
|
| 79 |
+
return False
|
| 80 |
+
|
| 81 |
+
def is_rocm(self) -> bool:
|
| 82 |
+
return False
|
| 83 |
+
|
| 84 |
+
def is_mps(self) -> bool:
|
| 85 |
+
return True
|
| 86 |
+
|
| 87 |
+
current_platform = (
|
| 88 |
+
RocmPlatform() if IS_ROCM else
|
| 89 |
+
MpsPlatform() if IS_MPS else
|
| 90 |
+
CudaPlatform() if torch.cuda.is_available() else
|
| 91 |
+
None
|
| 92 |
+
)
|
build/torch29-cxx11-cu130-x86_64-linux/paged_attention/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ._custom_ops import (
|
| 2 |
+
convert_fp8,
|
| 3 |
+
copy_blocks,
|
| 4 |
+
paged_attention_v1,
|
| 5 |
+
paged_attention_v2,
|
| 6 |
+
reshape_and_cache,
|
| 7 |
+
reshape_and_cache_flash,
|
| 8 |
+
swap_blocks,
|
| 9 |
+
)
|
| 10 |
+
from ._ops import ops
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
"convert_fp8",
|
| 14 |
+
"copy_blocks",
|
| 15 |
+
"ops",
|
| 16 |
+
"paged_attention_v1",
|
| 17 |
+
"paged_attention_v2",
|
| 18 |
+
"reshape_and_cache",
|
| 19 |
+
"reshape_and_cache_flash",
|
| 20 |
+
"swap_blocks",
|
| 21 |
+
]
|
build/torch29-cxx11-cu130-x86_64-linux/paged_attention/_custom_ops.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# page attention ops
|
| 9 |
+
def paged_attention_v1(
|
| 10 |
+
out: torch.Tensor,
|
| 11 |
+
query: torch.Tensor,
|
| 12 |
+
key_cache: torch.Tensor,
|
| 13 |
+
value_cache: torch.Tensor,
|
| 14 |
+
num_kv_heads: int,
|
| 15 |
+
scale: float,
|
| 16 |
+
block_tables: torch.Tensor,
|
| 17 |
+
seq_lens: torch.Tensor,
|
| 18 |
+
block_size: int,
|
| 19 |
+
max_seq_len: int,
|
| 20 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 21 |
+
kv_cache_dtype: str,
|
| 22 |
+
k_scale: float,
|
| 23 |
+
v_scale: float,
|
| 24 |
+
tp_rank: int = 0,
|
| 25 |
+
blocksparse_local_blocks: int = 0,
|
| 26 |
+
blocksparse_vert_stride: int = 0,
|
| 27 |
+
blocksparse_block_size: int = 64,
|
| 28 |
+
blocksparse_head_sliding_step: int = 0,
|
| 29 |
+
) -> None:
|
| 30 |
+
ops.paged_attention_v1(
|
| 31 |
+
out,
|
| 32 |
+
query,
|
| 33 |
+
key_cache,
|
| 34 |
+
value_cache,
|
| 35 |
+
num_kv_heads,
|
| 36 |
+
scale,
|
| 37 |
+
block_tables,
|
| 38 |
+
seq_lens,
|
| 39 |
+
block_size,
|
| 40 |
+
max_seq_len,
|
| 41 |
+
alibi_slopes,
|
| 42 |
+
kv_cache_dtype,
|
| 43 |
+
k_scale,
|
| 44 |
+
v_scale,
|
| 45 |
+
tp_rank,
|
| 46 |
+
blocksparse_local_blocks,
|
| 47 |
+
blocksparse_vert_stride,
|
| 48 |
+
blocksparse_block_size,
|
| 49 |
+
blocksparse_head_sliding_step,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def paged_attention_v2(
|
| 54 |
+
out: torch.Tensor,
|
| 55 |
+
exp_sum: torch.Tensor,
|
| 56 |
+
max_logits: torch.Tensor,
|
| 57 |
+
tmp_out: torch.Tensor,
|
| 58 |
+
query: torch.Tensor,
|
| 59 |
+
key_cache: torch.Tensor,
|
| 60 |
+
value_cache: torch.Tensor,
|
| 61 |
+
num_kv_heads: int,
|
| 62 |
+
scale: float,
|
| 63 |
+
block_tables: torch.Tensor,
|
| 64 |
+
seq_lens: torch.Tensor,
|
| 65 |
+
block_size: int,
|
| 66 |
+
max_seq_len: int,
|
| 67 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 68 |
+
kv_cache_dtype: str,
|
| 69 |
+
k_scale: float,
|
| 70 |
+
v_scale: float,
|
| 71 |
+
tp_rank: int = 0,
|
| 72 |
+
blocksparse_local_blocks: int = 0,
|
| 73 |
+
blocksparse_vert_stride: int = 0,
|
| 74 |
+
blocksparse_block_size: int = 64,
|
| 75 |
+
blocksparse_head_sliding_step: int = 0,
|
| 76 |
+
) -> None:
|
| 77 |
+
ops.paged_attention_v2(
|
| 78 |
+
out,
|
| 79 |
+
exp_sum,
|
| 80 |
+
max_logits,
|
| 81 |
+
tmp_out,
|
| 82 |
+
query,
|
| 83 |
+
key_cache,
|
| 84 |
+
value_cache,
|
| 85 |
+
num_kv_heads,
|
| 86 |
+
scale,
|
| 87 |
+
block_tables,
|
| 88 |
+
seq_lens,
|
| 89 |
+
block_size,
|
| 90 |
+
max_seq_len,
|
| 91 |
+
alibi_slopes,
|
| 92 |
+
kv_cache_dtype,
|
| 93 |
+
k_scale,
|
| 94 |
+
v_scale,
|
| 95 |
+
tp_rank,
|
| 96 |
+
blocksparse_local_blocks,
|
| 97 |
+
blocksparse_vert_stride,
|
| 98 |
+
blocksparse_block_size,
|
| 99 |
+
blocksparse_head_sliding_step,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def reshape_and_cache(
|
| 104 |
+
key: torch.Tensor,
|
| 105 |
+
value: torch.Tensor,
|
| 106 |
+
key_cache: torch.Tensor,
|
| 107 |
+
value_cache: torch.Tensor,
|
| 108 |
+
slot_mapping: torch.Tensor,
|
| 109 |
+
kv_cache_dtype: str,
|
| 110 |
+
k_scale: float,
|
| 111 |
+
v_scale: float,
|
| 112 |
+
) -> None:
|
| 113 |
+
ops.reshape_and_cache(
|
| 114 |
+
key,
|
| 115 |
+
value,
|
| 116 |
+
key_cache,
|
| 117 |
+
value_cache,
|
| 118 |
+
slot_mapping,
|
| 119 |
+
kv_cache_dtype,
|
| 120 |
+
k_scale,
|
| 121 |
+
v_scale,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def reshape_and_cache_flash(
|
| 126 |
+
key: torch.Tensor,
|
| 127 |
+
value: torch.Tensor,
|
| 128 |
+
key_cache: torch.Tensor,
|
| 129 |
+
value_cache: torch.Tensor,
|
| 130 |
+
slot_mapping: torch.Tensor,
|
| 131 |
+
kv_cache_dtype: str,
|
| 132 |
+
k_scale: torch.Tensor,
|
| 133 |
+
v_scale: torch.Tensor,
|
| 134 |
+
) -> None:
|
| 135 |
+
ops.reshape_and_cache_flash(
|
| 136 |
+
key,
|
| 137 |
+
value,
|
| 138 |
+
key_cache,
|
| 139 |
+
value_cache,
|
| 140 |
+
slot_mapping,
|
| 141 |
+
kv_cache_dtype,
|
| 142 |
+
k_scale,
|
| 143 |
+
v_scale,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def copy_blocks(
|
| 148 |
+
key_caches: List[torch.Tensor],
|
| 149 |
+
value_caches: List[torch.Tensor],
|
| 150 |
+
block_mapping: torch.Tensor,
|
| 151 |
+
) -> None:
|
| 152 |
+
ops.copy_blocks(key_caches, value_caches, block_mapping)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def swap_blocks(
|
| 156 |
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
| 157 |
+
) -> None:
|
| 158 |
+
ops.swap_blocks(src, dst, block_mapping)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def convert_fp8(
|
| 162 |
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
| 163 |
+
) -> None:
|
| 164 |
+
ops.convert_fp8(output, input, scale, kv_dtype)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
__all__ = [
|
| 168 |
+
"convert_fp8",
|
| 169 |
+
"paged_attention_v1",
|
| 170 |
+
"paged_attention_v2",
|
| 171 |
+
"reshape_and_cache",
|
| 172 |
+
"copy_blocks",
|
| 173 |
+
]
|
build/torch29-cxx11-cu130-x86_64-linux/paged_attention/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _paged_attention_287831d
|
| 3 |
+
ops = torch.ops._paged_attention_287831d
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_paged_attention_287831d::{op_name}"
|
build/torch29-cxx11-cu130-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:231953b324c6cfd0847c9322d311e7096af3909ced06344b6a5485baed936767
|
| 3 |
+
size 63028488
|
build/torch29-cxx11-cu130-x86_64-linux/paged_attention/platforms.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from abc import ABC, abstractmethod
|
| 4 |
+
from functools import lru_cache, wraps
|
| 5 |
+
from typing import Callable, ParamSpec, TypeVar
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
IS_ROCM = torch.version.hip is not None
|
| 11 |
+
IS_MPS = torch.backends.mps.is_available()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Platform(ABC):
|
| 15 |
+
@classmethod
|
| 16 |
+
def seed_everything(cls, seed: int) -> None:
|
| 17 |
+
"""
|
| 18 |
+
Set the seed of each random module.
|
| 19 |
+
`torch.manual_seed` will set seed on all devices.
|
| 20 |
+
|
| 21 |
+
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
| 22 |
+
"""
|
| 23 |
+
random.seed(seed)
|
| 24 |
+
np.random.seed(seed)
|
| 25 |
+
torch.manual_seed(seed)
|
| 26 |
+
|
| 27 |
+
@abstractmethod
|
| 28 |
+
def get_device_name(self, device_id: int = 0) -> str: ...
|
| 29 |
+
|
| 30 |
+
@abstractmethod
|
| 31 |
+
def is_cuda(self) -> bool: ...
|
| 32 |
+
|
| 33 |
+
@abstractmethod
|
| 34 |
+
def is_rocm(self) -> bool: ...
|
| 35 |
+
|
| 36 |
+
@abstractmethod
|
| 37 |
+
def is_mps(self) -> bool: ...
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class CudaPlatform(Platform):
|
| 41 |
+
@classmethod
|
| 42 |
+
@lru_cache(maxsize=8)
|
| 43 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 44 |
+
return torch.cuda.get_device_name(0)
|
| 45 |
+
|
| 46 |
+
def is_cuda(self) -> bool:
|
| 47 |
+
return True
|
| 48 |
+
|
| 49 |
+
def is_rocm(self) -> bool:
|
| 50 |
+
return False
|
| 51 |
+
|
| 52 |
+
def is_mps(self) -> bool:
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class RocmPlatform(Platform):
|
| 57 |
+
@classmethod
|
| 58 |
+
@lru_cache(maxsize=8)
|
| 59 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 60 |
+
return torch.cuda.get_device_name(device_id)
|
| 61 |
+
|
| 62 |
+
def is_cuda(self) -> bool:
|
| 63 |
+
return False
|
| 64 |
+
|
| 65 |
+
def is_rocm(self) -> bool:
|
| 66 |
+
return True
|
| 67 |
+
|
| 68 |
+
def is_mps(self) -> bool:
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class MpsPlatform(Platform):
|
| 73 |
+
@classmethod
|
| 74 |
+
@lru_cache(maxsize=8)
|
| 75 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 76 |
+
return torch.cuda.get_device_name(device_id)
|
| 77 |
+
|
| 78 |
+
def is_cuda(self) -> bool:
|
| 79 |
+
return False
|
| 80 |
+
|
| 81 |
+
def is_rocm(self) -> bool:
|
| 82 |
+
return False
|
| 83 |
+
|
| 84 |
+
def is_mps(self) -> bool:
|
| 85 |
+
return True
|
| 86 |
+
|
| 87 |
+
current_platform = (
|
| 88 |
+
RocmPlatform() if IS_ROCM else
|
| 89 |
+
MpsPlatform() if IS_MPS else
|
| 90 |
+
CudaPlatform() if torch.cuda.is_available() else
|
| 91 |
+
None
|
| 92 |
+
)
|
build/torch29-cxx11-rocm63-x86_64-linux/paged_attention/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ._custom_ops import (
|
| 2 |
+
convert_fp8,
|
| 3 |
+
copy_blocks,
|
| 4 |
+
paged_attention_v1,
|
| 5 |
+
paged_attention_v2,
|
| 6 |
+
reshape_and_cache,
|
| 7 |
+
reshape_and_cache_flash,
|
| 8 |
+
swap_blocks,
|
| 9 |
+
)
|
| 10 |
+
from ._ops import ops
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
"convert_fp8",
|
| 14 |
+
"copy_blocks",
|
| 15 |
+
"ops",
|
| 16 |
+
"paged_attention_v1",
|
| 17 |
+
"paged_attention_v2",
|
| 18 |
+
"reshape_and_cache",
|
| 19 |
+
"reshape_and_cache_flash",
|
| 20 |
+
"swap_blocks",
|
| 21 |
+
]
|
build/torch29-cxx11-rocm63-x86_64-linux/paged_attention/_custom_ops.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# page attention ops
|
| 9 |
+
def paged_attention_v1(
|
| 10 |
+
out: torch.Tensor,
|
| 11 |
+
query: torch.Tensor,
|
| 12 |
+
key_cache: torch.Tensor,
|
| 13 |
+
value_cache: torch.Tensor,
|
| 14 |
+
num_kv_heads: int,
|
| 15 |
+
scale: float,
|
| 16 |
+
block_tables: torch.Tensor,
|
| 17 |
+
seq_lens: torch.Tensor,
|
| 18 |
+
block_size: int,
|
| 19 |
+
max_seq_len: int,
|
| 20 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 21 |
+
kv_cache_dtype: str,
|
| 22 |
+
k_scale: float,
|
| 23 |
+
v_scale: float,
|
| 24 |
+
tp_rank: int = 0,
|
| 25 |
+
blocksparse_local_blocks: int = 0,
|
| 26 |
+
blocksparse_vert_stride: int = 0,
|
| 27 |
+
blocksparse_block_size: int = 64,
|
| 28 |
+
blocksparse_head_sliding_step: int = 0,
|
| 29 |
+
) -> None:
|
| 30 |
+
ops.paged_attention_v1(
|
| 31 |
+
out,
|
| 32 |
+
query,
|
| 33 |
+
key_cache,
|
| 34 |
+
value_cache,
|
| 35 |
+
num_kv_heads,
|
| 36 |
+
scale,
|
| 37 |
+
block_tables,
|
| 38 |
+
seq_lens,
|
| 39 |
+
block_size,
|
| 40 |
+
max_seq_len,
|
| 41 |
+
alibi_slopes,
|
| 42 |
+
kv_cache_dtype,
|
| 43 |
+
k_scale,
|
| 44 |
+
v_scale,
|
| 45 |
+
tp_rank,
|
| 46 |
+
blocksparse_local_blocks,
|
| 47 |
+
blocksparse_vert_stride,
|
| 48 |
+
blocksparse_block_size,
|
| 49 |
+
blocksparse_head_sliding_step,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def paged_attention_v2(
|
| 54 |
+
out: torch.Tensor,
|
| 55 |
+
exp_sum: torch.Tensor,
|
| 56 |
+
max_logits: torch.Tensor,
|
| 57 |
+
tmp_out: torch.Tensor,
|
| 58 |
+
query: torch.Tensor,
|
| 59 |
+
key_cache: torch.Tensor,
|
| 60 |
+
value_cache: torch.Tensor,
|
| 61 |
+
num_kv_heads: int,
|
| 62 |
+
scale: float,
|
| 63 |
+
block_tables: torch.Tensor,
|
| 64 |
+
seq_lens: torch.Tensor,
|
| 65 |
+
block_size: int,
|
| 66 |
+
max_seq_len: int,
|
| 67 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 68 |
+
kv_cache_dtype: str,
|
| 69 |
+
k_scale: float,
|
| 70 |
+
v_scale: float,
|
| 71 |
+
tp_rank: int = 0,
|
| 72 |
+
blocksparse_local_blocks: int = 0,
|
| 73 |
+
blocksparse_vert_stride: int = 0,
|
| 74 |
+
blocksparse_block_size: int = 64,
|
| 75 |
+
blocksparse_head_sliding_step: int = 0,
|
| 76 |
+
) -> None:
|
| 77 |
+
ops.paged_attention_v2(
|
| 78 |
+
out,
|
| 79 |
+
exp_sum,
|
| 80 |
+
max_logits,
|
| 81 |
+
tmp_out,
|
| 82 |
+
query,
|
| 83 |
+
key_cache,
|
| 84 |
+
value_cache,
|
| 85 |
+
num_kv_heads,
|
| 86 |
+
scale,
|
| 87 |
+
block_tables,
|
| 88 |
+
seq_lens,
|
| 89 |
+
block_size,
|
| 90 |
+
max_seq_len,
|
| 91 |
+
alibi_slopes,
|
| 92 |
+
kv_cache_dtype,
|
| 93 |
+
k_scale,
|
| 94 |
+
v_scale,
|
| 95 |
+
tp_rank,
|
| 96 |
+
blocksparse_local_blocks,
|
| 97 |
+
blocksparse_vert_stride,
|
| 98 |
+
blocksparse_block_size,
|
| 99 |
+
blocksparse_head_sliding_step,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def reshape_and_cache(
|
| 104 |
+
key: torch.Tensor,
|
| 105 |
+
value: torch.Tensor,
|
| 106 |
+
key_cache: torch.Tensor,
|
| 107 |
+
value_cache: torch.Tensor,
|
| 108 |
+
slot_mapping: torch.Tensor,
|
| 109 |
+
kv_cache_dtype: str,
|
| 110 |
+
k_scale: float,
|
| 111 |
+
v_scale: float,
|
| 112 |
+
) -> None:
|
| 113 |
+
ops.reshape_and_cache(
|
| 114 |
+
key,
|
| 115 |
+
value,
|
| 116 |
+
key_cache,
|
| 117 |
+
value_cache,
|
| 118 |
+
slot_mapping,
|
| 119 |
+
kv_cache_dtype,
|
| 120 |
+
k_scale,
|
| 121 |
+
v_scale,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def reshape_and_cache_flash(
|
| 126 |
+
key: torch.Tensor,
|
| 127 |
+
value: torch.Tensor,
|
| 128 |
+
key_cache: torch.Tensor,
|
| 129 |
+
value_cache: torch.Tensor,
|
| 130 |
+
slot_mapping: torch.Tensor,
|
| 131 |
+
kv_cache_dtype: str,
|
| 132 |
+
k_scale: torch.Tensor,
|
| 133 |
+
v_scale: torch.Tensor,
|
| 134 |
+
) -> None:
|
| 135 |
+
ops.reshape_and_cache_flash(
|
| 136 |
+
key,
|
| 137 |
+
value,
|
| 138 |
+
key_cache,
|
| 139 |
+
value_cache,
|
| 140 |
+
slot_mapping,
|
| 141 |
+
kv_cache_dtype,
|
| 142 |
+
k_scale,
|
| 143 |
+
v_scale,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def copy_blocks(
|
| 148 |
+
key_caches: List[torch.Tensor],
|
| 149 |
+
value_caches: List[torch.Tensor],
|
| 150 |
+
block_mapping: torch.Tensor,
|
| 151 |
+
) -> None:
|
| 152 |
+
ops.copy_blocks(key_caches, value_caches, block_mapping)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def swap_blocks(
|
| 156 |
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
| 157 |
+
) -> None:
|
| 158 |
+
ops.swap_blocks(src, dst, block_mapping)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def convert_fp8(
|
| 162 |
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
| 163 |
+
) -> None:
|
| 164 |
+
ops.convert_fp8(output, input, scale, kv_dtype)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
__all__ = [
|
| 168 |
+
"convert_fp8",
|
| 169 |
+
"paged_attention_v1",
|
| 170 |
+
"paged_attention_v2",
|
| 171 |
+
"reshape_and_cache",
|
| 172 |
+
"copy_blocks",
|
| 173 |
+
]
|
build/torch29-cxx11-rocm63-x86_64-linux/paged_attention/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _paged_attention_287831d
|
| 3 |
+
ops = torch.ops._paged_attention_287831d
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_paged_attention_287831d::{op_name}"
|
build/torch29-cxx11-rocm63-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:406d35b2ad310b4d62739fb18b48931e7631d608ab10be496e65784860d12bae
|
| 3 |
+
size 120179000
|
build/torch29-cxx11-rocm63-x86_64-linux/paged_attention/platforms.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from abc import ABC, abstractmethod
|
| 4 |
+
from functools import lru_cache, wraps
|
| 5 |
+
from typing import Callable, ParamSpec, TypeVar
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
IS_ROCM = torch.version.hip is not None
|
| 11 |
+
IS_MPS = torch.backends.mps.is_available()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Platform(ABC):
|
| 15 |
+
@classmethod
|
| 16 |
+
def seed_everything(cls, seed: int) -> None:
|
| 17 |
+
"""
|
| 18 |
+
Set the seed of each random module.
|
| 19 |
+
`torch.manual_seed` will set seed on all devices.
|
| 20 |
+
|
| 21 |
+
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
| 22 |
+
"""
|
| 23 |
+
random.seed(seed)
|
| 24 |
+
np.random.seed(seed)
|
| 25 |
+
torch.manual_seed(seed)
|
| 26 |
+
|
| 27 |
+
@abstractmethod
|
| 28 |
+
def get_device_name(self, device_id: int = 0) -> str: ...
|
| 29 |
+
|
| 30 |
+
@abstractmethod
|
| 31 |
+
def is_cuda(self) -> bool: ...
|
| 32 |
+
|
| 33 |
+
@abstractmethod
|
| 34 |
+
def is_rocm(self) -> bool: ...
|
| 35 |
+
|
| 36 |
+
@abstractmethod
|
| 37 |
+
def is_mps(self) -> bool: ...
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class CudaPlatform(Platform):
|
| 41 |
+
@classmethod
|
| 42 |
+
@lru_cache(maxsize=8)
|
| 43 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 44 |
+
return torch.cuda.get_device_name(0)
|
| 45 |
+
|
| 46 |
+
def is_cuda(self) -> bool:
|
| 47 |
+
return True
|
| 48 |
+
|
| 49 |
+
def is_rocm(self) -> bool:
|
| 50 |
+
return False
|
| 51 |
+
|
| 52 |
+
def is_mps(self) -> bool:
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class RocmPlatform(Platform):
|
| 57 |
+
@classmethod
|
| 58 |
+
@lru_cache(maxsize=8)
|
| 59 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 60 |
+
return torch.cuda.get_device_name(device_id)
|
| 61 |
+
|
| 62 |
+
def is_cuda(self) -> bool:
|
| 63 |
+
return False
|
| 64 |
+
|
| 65 |
+
def is_rocm(self) -> bool:
|
| 66 |
+
return True
|
| 67 |
+
|
| 68 |
+
def is_mps(self) -> bool:
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class MpsPlatform(Platform):
|
| 73 |
+
@classmethod
|
| 74 |
+
@lru_cache(maxsize=8)
|
| 75 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 76 |
+
return torch.cuda.get_device_name(device_id)
|
| 77 |
+
|
| 78 |
+
def is_cuda(self) -> bool:
|
| 79 |
+
return False
|
| 80 |
+
|
| 81 |
+
def is_rocm(self) -> bool:
|
| 82 |
+
return False
|
| 83 |
+
|
| 84 |
+
def is_mps(self) -> bool:
|
| 85 |
+
return True
|
| 86 |
+
|
| 87 |
+
current_platform = (
|
| 88 |
+
RocmPlatform() if IS_ROCM else
|
| 89 |
+
MpsPlatform() if IS_MPS else
|
| 90 |
+
CudaPlatform() if torch.cuda.is_available() else
|
| 91 |
+
None
|
| 92 |
+
)
|
build/torch29-cxx11-rocm64-x86_64-linux/paged_attention/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ._custom_ops import (
|
| 2 |
+
convert_fp8,
|
| 3 |
+
copy_blocks,
|
| 4 |
+
paged_attention_v1,
|
| 5 |
+
paged_attention_v2,
|
| 6 |
+
reshape_and_cache,
|
| 7 |
+
reshape_and_cache_flash,
|
| 8 |
+
swap_blocks,
|
| 9 |
+
)
|
| 10 |
+
from ._ops import ops
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
"convert_fp8",
|
| 14 |
+
"copy_blocks",
|
| 15 |
+
"ops",
|
| 16 |
+
"paged_attention_v1",
|
| 17 |
+
"paged_attention_v2",
|
| 18 |
+
"reshape_and_cache",
|
| 19 |
+
"reshape_and_cache_flash",
|
| 20 |
+
"swap_blocks",
|
| 21 |
+
]
|
build/torch29-cxx11-rocm64-x86_64-linux/paged_attention/_custom_ops.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# page attention ops
|
| 9 |
+
def paged_attention_v1(
|
| 10 |
+
out: torch.Tensor,
|
| 11 |
+
query: torch.Tensor,
|
| 12 |
+
key_cache: torch.Tensor,
|
| 13 |
+
value_cache: torch.Tensor,
|
| 14 |
+
num_kv_heads: int,
|
| 15 |
+
scale: float,
|
| 16 |
+
block_tables: torch.Tensor,
|
| 17 |
+
seq_lens: torch.Tensor,
|
| 18 |
+
block_size: int,
|
| 19 |
+
max_seq_len: int,
|
| 20 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 21 |
+
kv_cache_dtype: str,
|
| 22 |
+
k_scale: float,
|
| 23 |
+
v_scale: float,
|
| 24 |
+
tp_rank: int = 0,
|
| 25 |
+
blocksparse_local_blocks: int = 0,
|
| 26 |
+
blocksparse_vert_stride: int = 0,
|
| 27 |
+
blocksparse_block_size: int = 64,
|
| 28 |
+
blocksparse_head_sliding_step: int = 0,
|
| 29 |
+
) -> None:
|
| 30 |
+
ops.paged_attention_v1(
|
| 31 |
+
out,
|
| 32 |
+
query,
|
| 33 |
+
key_cache,
|
| 34 |
+
value_cache,
|
| 35 |
+
num_kv_heads,
|
| 36 |
+
scale,
|
| 37 |
+
block_tables,
|
| 38 |
+
seq_lens,
|
| 39 |
+
block_size,
|
| 40 |
+
max_seq_len,
|
| 41 |
+
alibi_slopes,
|
| 42 |
+
kv_cache_dtype,
|
| 43 |
+
k_scale,
|
| 44 |
+
v_scale,
|
| 45 |
+
tp_rank,
|
| 46 |
+
blocksparse_local_blocks,
|
| 47 |
+
blocksparse_vert_stride,
|
| 48 |
+
blocksparse_block_size,
|
| 49 |
+
blocksparse_head_sliding_step,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def paged_attention_v2(
|
| 54 |
+
out: torch.Tensor,
|
| 55 |
+
exp_sum: torch.Tensor,
|
| 56 |
+
max_logits: torch.Tensor,
|
| 57 |
+
tmp_out: torch.Tensor,
|
| 58 |
+
query: torch.Tensor,
|
| 59 |
+
key_cache: torch.Tensor,
|
| 60 |
+
value_cache: torch.Tensor,
|
| 61 |
+
num_kv_heads: int,
|
| 62 |
+
scale: float,
|
| 63 |
+
block_tables: torch.Tensor,
|
| 64 |
+
seq_lens: torch.Tensor,
|
| 65 |
+
block_size: int,
|
| 66 |
+
max_seq_len: int,
|
| 67 |
+
alibi_slopes: Optional[torch.Tensor],
|
| 68 |
+
kv_cache_dtype: str,
|
| 69 |
+
k_scale: float,
|
| 70 |
+
v_scale: float,
|
| 71 |
+
tp_rank: int = 0,
|
| 72 |
+
blocksparse_local_blocks: int = 0,
|
| 73 |
+
blocksparse_vert_stride: int = 0,
|
| 74 |
+
blocksparse_block_size: int = 64,
|
| 75 |
+
blocksparse_head_sliding_step: int = 0,
|
| 76 |
+
) -> None:
|
| 77 |
+
ops.paged_attention_v2(
|
| 78 |
+
out,
|
| 79 |
+
exp_sum,
|
| 80 |
+
max_logits,
|
| 81 |
+
tmp_out,
|
| 82 |
+
query,
|
| 83 |
+
key_cache,
|
| 84 |
+
value_cache,
|
| 85 |
+
num_kv_heads,
|
| 86 |
+
scale,
|
| 87 |
+
block_tables,
|
| 88 |
+
seq_lens,
|
| 89 |
+
block_size,
|
| 90 |
+
max_seq_len,
|
| 91 |
+
alibi_slopes,
|
| 92 |
+
kv_cache_dtype,
|
| 93 |
+
k_scale,
|
| 94 |
+
v_scale,
|
| 95 |
+
tp_rank,
|
| 96 |
+
blocksparse_local_blocks,
|
| 97 |
+
blocksparse_vert_stride,
|
| 98 |
+
blocksparse_block_size,
|
| 99 |
+
blocksparse_head_sliding_step,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def reshape_and_cache(
|
| 104 |
+
key: torch.Tensor,
|
| 105 |
+
value: torch.Tensor,
|
| 106 |
+
key_cache: torch.Tensor,
|
| 107 |
+
value_cache: torch.Tensor,
|
| 108 |
+
slot_mapping: torch.Tensor,
|
| 109 |
+
kv_cache_dtype: str,
|
| 110 |
+
k_scale: float,
|
| 111 |
+
v_scale: float,
|
| 112 |
+
) -> None:
|
| 113 |
+
ops.reshape_and_cache(
|
| 114 |
+
key,
|
| 115 |
+
value,
|
| 116 |
+
key_cache,
|
| 117 |
+
value_cache,
|
| 118 |
+
slot_mapping,
|
| 119 |
+
kv_cache_dtype,
|
| 120 |
+
k_scale,
|
| 121 |
+
v_scale,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def reshape_and_cache_flash(
|
| 126 |
+
key: torch.Tensor,
|
| 127 |
+
value: torch.Tensor,
|
| 128 |
+
key_cache: torch.Tensor,
|
| 129 |
+
value_cache: torch.Tensor,
|
| 130 |
+
slot_mapping: torch.Tensor,
|
| 131 |
+
kv_cache_dtype: str,
|
| 132 |
+
k_scale: torch.Tensor,
|
| 133 |
+
v_scale: torch.Tensor,
|
| 134 |
+
) -> None:
|
| 135 |
+
ops.reshape_and_cache_flash(
|
| 136 |
+
key,
|
| 137 |
+
value,
|
| 138 |
+
key_cache,
|
| 139 |
+
value_cache,
|
| 140 |
+
slot_mapping,
|
| 141 |
+
kv_cache_dtype,
|
| 142 |
+
k_scale,
|
| 143 |
+
v_scale,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def copy_blocks(
|
| 148 |
+
key_caches: List[torch.Tensor],
|
| 149 |
+
value_caches: List[torch.Tensor],
|
| 150 |
+
block_mapping: torch.Tensor,
|
| 151 |
+
) -> None:
|
| 152 |
+
ops.copy_blocks(key_caches, value_caches, block_mapping)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def swap_blocks(
|
| 156 |
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
| 157 |
+
) -> None:
|
| 158 |
+
ops.swap_blocks(src, dst, block_mapping)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def convert_fp8(
|
| 162 |
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
| 163 |
+
) -> None:
|
| 164 |
+
ops.convert_fp8(output, input, scale, kv_dtype)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
__all__ = [
|
| 168 |
+
"convert_fp8",
|
| 169 |
+
"paged_attention_v1",
|
| 170 |
+
"paged_attention_v2",
|
| 171 |
+
"reshape_and_cache",
|
| 172 |
+
"copy_blocks",
|
| 173 |
+
]
|
build/torch29-cxx11-rocm64-x86_64-linux/paged_attention/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _paged_attention_287831d
|
| 3 |
+
ops = torch.ops._paged_attention_287831d
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_paged_attention_287831d::{op_name}"
|
build/torch29-cxx11-rocm64-x86_64-linux/paged_attention/_paged_attention_287831d.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0b142366acfa55e943523691850460892ec311161d9dbba4b3ac4dcaa8a96794
|
| 3 |
+
size 121016696
|
build/torch29-cxx11-rocm64-x86_64-linux/paged_attention/platforms.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from abc import ABC, abstractmethod
|
| 4 |
+
from functools import lru_cache, wraps
|
| 5 |
+
from typing import Callable, ParamSpec, TypeVar
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
IS_ROCM = torch.version.hip is not None
|
| 11 |
+
IS_MPS = torch.backends.mps.is_available()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Platform(ABC):
|
| 15 |
+
@classmethod
|
| 16 |
+
def seed_everything(cls, seed: int) -> None:
|
| 17 |
+
"""
|
| 18 |
+
Set the seed of each random module.
|
| 19 |
+
`torch.manual_seed` will set seed on all devices.
|
| 20 |
+
|
| 21 |
+
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
| 22 |
+
"""
|
| 23 |
+
random.seed(seed)
|
| 24 |
+
np.random.seed(seed)
|
| 25 |
+
torch.manual_seed(seed)
|
| 26 |
+
|
| 27 |
+
@abstractmethod
|
| 28 |
+
def get_device_name(self, device_id: int = 0) -> str: ...
|
| 29 |
+
|
| 30 |
+
@abstractmethod
|
| 31 |
+
def is_cuda(self) -> bool: ...
|
| 32 |
+
|
| 33 |
+
@abstractmethod
|
| 34 |
+
def is_rocm(self) -> bool: ...
|
| 35 |
+
|
| 36 |
+
@abstractmethod
|
| 37 |
+
def is_mps(self) -> bool: ...
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class CudaPlatform(Platform):
|
| 41 |
+
@classmethod
|
| 42 |
+
@lru_cache(maxsize=8)
|
| 43 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 44 |
+
return torch.cuda.get_device_name(0)
|
| 45 |
+
|
| 46 |
+
def is_cuda(self) -> bool:
|
| 47 |
+
return True
|
| 48 |
+
|
| 49 |
+
def is_rocm(self) -> bool:
|
| 50 |
+
return False
|
| 51 |
+
|
| 52 |
+
def is_mps(self) -> bool:
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class RocmPlatform(Platform):
|
| 57 |
+
@classmethod
|
| 58 |
+
@lru_cache(maxsize=8)
|
| 59 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 60 |
+
return torch.cuda.get_device_name(device_id)
|
| 61 |
+
|
| 62 |
+
def is_cuda(self) -> bool:
|
| 63 |
+
return False
|
| 64 |
+
|
| 65 |
+
def is_rocm(self) -> bool:
|
| 66 |
+
return True
|
| 67 |
+
|
| 68 |
+
def is_mps(self) -> bool:
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class MpsPlatform(Platform):
|
| 73 |
+
@classmethod
|
| 74 |
+
@lru_cache(maxsize=8)
|
| 75 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
| 76 |
+
return torch.cuda.get_device_name(device_id)
|
| 77 |
+
|
| 78 |
+
def is_cuda(self) -> bool:
|
| 79 |
+
return False
|
| 80 |
+
|
| 81 |
+
def is_rocm(self) -> bool:
|
| 82 |
+
return False
|
| 83 |
+
|
| 84 |
+
def is_mps(self) -> bool:
|
| 85 |
+
return True
|
| 86 |
+
|
| 87 |
+
current_platform = (
|
| 88 |
+
RocmPlatform() if IS_ROCM else
|
| 89 |
+
MpsPlatform() if IS_MPS else
|
| 90 |
+
CudaPlatform() if torch.cuda.is_available() else
|
| 91 |
+
None
|
| 92 |
+
)
|