new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

DynVideo-E: Harnessing Dynamic NeRF for Large-Scale Motion- and View-Change Human-Centric Video Editing

Despite remarkable research advances in diffusion-based video editing, existing methods are limited to short-length videos due to the contradiction between long-range consistency and frame-wise editing. Recent approaches attempt to tackle this challenge by introducing video-2D representations to degrade video editing to image editing. However, they encounter significant difficulties in handling large-scale motion- and view-change videos especially for human-centric videos. This motivates us to introduce the dynamic Neural Radiance Fields (NeRF) as the human-centric video representation to ease the video editing problem to a 3D space editing task. As such, editing can be performed in the 3D spaces and propagated to the entire video via the deformation field. To provide finer and direct controllable editing, we propose the image-based 3D space editing pipeline with a set of effective designs. These include multi-view multi-pose Score Distillation Sampling (SDS) from both 2D personalized diffusion priors and 3D diffusion priors, reconstruction losses on the reference image, text-guided local parts super-resolution, and style transfer for 3D background space. Extensive experiments demonstrate that our method, dubbed as DynVideo-E, significantly outperforms SOTA approaches on two challenging datasets by a large margin of 50% ~ 95% in terms of human preference. Compelling video comparisons are provided in the project page https://showlab.github.io/DynVideo-E/. Our code and data will be released to the community.

  • 9 authors
·
Oct 16, 2023

DiffusionGAN3D: Boosting Text-guided 3D Generation and Domain Adaption by Combining 3D GANs and Diffusion Priors

Text-guided domain adaption and generation of 3D-aware portraits find many applications in various fields. However, due to the lack of training data and the challenges in handling the high variety of geometry and appearance, the existing methods for these tasks suffer from issues like inflexibility, instability, and low fidelity. In this paper, we propose a novel framework DiffusionGAN3D, which boosts text-guided 3D domain adaption and generation by combining 3D GANs and diffusion priors. Specifically, we integrate the pre-trained 3D generative models (e.g., EG3D) and text-to-image diffusion models. The former provides a strong foundation for stable and high-quality avatar generation from text. And the diffusion models in turn offer powerful priors and guide the 3D generator finetuning with informative direction to achieve flexible and efficient text-guided domain adaption. To enhance the diversity in domain adaption and the generation capability in text-to-avatar, we introduce the relative distance loss and case-specific learnable triplane respectively. Besides, we design a progressive texture refinement module to improve the texture quality for both tasks above. Extensive experiments demonstrate that the proposed framework achieves excellent results in both domain adaption and text-to-avatar tasks, outperforming existing methods in terms of generation quality and efficiency. The project homepage is at https://younglbw.github.io/DiffusionGAN3D-homepage/.

  • 5 authors
·
Dec 28, 2023 1

GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image

We introduce GeoWizard, a new generative foundation model designed for estimating geometric attributes, e.g., depth and normals, from single images. While significant research has already been conducted in this area, the progress has been substantially limited by the low diversity and poor quality of publicly available datasets. As a result, the prior works either are constrained to limited scenarios or suffer from the inability to capture geometric details. In this paper, we demonstrate that generative models, as opposed to traditional discriminative models (e.g., CNNs and Transformers), can effectively address the inherently ill-posed problem. We further show that leveraging diffusion priors can markedly improve generalization, detail preservation, and efficiency in resource usage. Specifically, we extend the original stable diffusion model to jointly predict depth and normal, allowing mutual information exchange and high consistency between the two representations. More importantly, we propose a simple yet effective strategy to segregate the complex data distribution of various scenes into distinct sub-distributions. This strategy enables our model to recognize different scene layouts, capturing 3D geometry with remarkable fidelity. GeoWizard sets new benchmarks for zero-shot depth and normal prediction, significantly enhancing many downstream applications such as 3D reconstruction, 2D content creation, and novel viewpoint synthesis.

  • 9 authors
·
Mar 18, 2024

Spice-E : Structural Priors in 3D Diffusion using Cross-Entity Attention

We are witnessing rapid progress in automatically generating and manipulating 3D assets due to the availability of pretrained text-image diffusion models. However, time-consuming optimization procedures are required for synthesizing each sample, hindering their potential for democratizing 3D content creation. Conversely, 3D diffusion models now train on million-scale 3D datasets, yielding high-quality text-conditional 3D samples within seconds. In this work, we present Spice-E - a neural network that adds structural guidance to 3D diffusion models, extending their usage beyond text-conditional generation. At its core, our framework introduces a cross-entity attention mechanism that allows for multiple entities (in particular, paired input and guidance 3D shapes) to interact via their internal representations within the denoising network. We utilize this mechanism for learning task-specific structural priors in 3D diffusion models from auxiliary guidance shapes. We show that our approach supports a variety of applications, including 3D stylization, semantic shape editing and text-conditional abstraction-to-3D, which transforms primitive-based abstractions into highly-expressive shapes. Extensive experiments demonstrate that Spice-E achieves SOTA performance over these tasks while often being considerably faster than alternative methods. Importantly, this is accomplished without tailoring our approach for any specific task.

  • 4 authors
·
Nov 29, 2023

GSFixer: Improving 3D Gaussian Splatting with Reference-Guided Video Diffusion Priors

Reconstructing 3D scenes using 3D Gaussian Splatting (3DGS) from sparse views is an ill-posed problem due to insufficient information, often resulting in noticeable artifacts. While recent approaches have sought to leverage generative priors to complete information for under-constrained regions, they struggle to generate content that remains consistent with input observations. To address this challenge, we propose GSFixer, a novel framework designed to improve the quality of 3DGS representations reconstructed from sparse inputs. The core of our approach is the reference-guided video restoration model, built upon a DiT-based video diffusion model trained on paired artifact 3DGS renders and clean frames with additional reference-based conditions. Considering the input sparse views as references, our model integrates both 2D semantic features and 3D geometric features of reference views extracted from the visual geometry foundation model, enhancing the semantic coherence and 3D consistency when fixing artifact novel views. Furthermore, considering the lack of suitable benchmarks for 3DGS artifact restoration evaluation, we present DL3DV-Res which contains artifact frames rendered using low-quality 3DGS. Extensive experiments demonstrate our GSFixer outperforms current state-of-the-art methods in 3DGS artifact restoration and sparse-view 3D reconstruction. Project page: https://github.com/GVCLab/GSFixer.

  • 9 authors
·
Aug 13, 2025 2

SparseGS-W: Sparse-View 3D Gaussian Splatting in the Wild with Generative Priors

Synthesizing novel views of large-scale scenes from unconstrained in-the-wild images is an important but challenging task in computer vision. Existing methods, which optimize per-image appearance and transient occlusion through implicit neural networks from dense training views (approximately 1000 images), struggle to perform effectively under sparse input conditions, resulting in noticeable artifacts. To this end, we propose SparseGS-W, a novel framework based on 3D Gaussian Splatting that enables the reconstruction of complex outdoor scenes and handles occlusions and appearance changes with as few as five training images. We leverage geometric priors and constrained diffusion priors to compensate for the lack of multi-view information from extremely sparse input. Specifically, we propose a plug-and-play Constrained Novel-View Enhancement module to iteratively improve the quality of rendered novel views during the Gaussian optimization process. Furthermore, we propose an Occlusion Handling module, which flexibly removes occlusions utilizing the inherent high-quality inpainting capability of constrained diffusion priors. Both modules are capable of extracting appearance features from any user-provided reference image, enabling flexible modeling of illumination-consistent scenes. Extensive experiments on the PhotoTourism and Tanks and Temples datasets demonstrate that SparseGS-W achieves state-of-the-art performance not only in full-reference metrics, but also in commonly used non-reference metrics such as FID, ClipIQA, and MUSIQ.

  • 5 authors
·
Mar 25, 2025

RI3D: Few-Shot Gaussian Splatting With Repair and Inpainting Diffusion Priors

In this paper, we propose RI3D, a novel 3DGS-based approach that harnesses the power of diffusion models to reconstruct high-quality novel views given a sparse set of input images. Our key contribution is separating the view synthesis process into two tasks of reconstructing visible regions and hallucinating missing regions, and introducing two personalized diffusion models, each tailored to one of these tasks. Specifically, one model ('repair') takes a rendered image as input and predicts the corresponding high-quality image, which in turn is used as a pseudo ground truth image to constrain the optimization. The other model ('inpainting') primarily focuses on hallucinating details in unobserved areas. To integrate these models effectively, we introduce a two-stage optimization strategy: the first stage reconstructs visible areas using the repair model, and the second stage reconstructs missing regions with the inpainting model while ensuring coherence through further optimization. Moreover, we augment the optimization with a novel Gaussian initialization method that obtains per-image depth by combining 3D-consistent and smooth depth with highly detailed relative depth. We demonstrate that by separating the process into two tasks and addressing them with the repair and inpainting models, we produce results with detailed textures in both visible and missing regions that outperform state-of-the-art approaches on a diverse set of scenes with extremely sparse inputs.

  • 6 authors
·
Mar 13, 2025

GeoDream: Disentangling 2D and Geometric Priors for High-Fidelity and Consistent 3D Generation

Text-to-3D generation by distilling pretrained large-scale text-to-image diffusion models has shown great promise but still suffers from inconsistent 3D geometric structures (Janus problems) and severe artifacts. The aforementioned problems mainly stem from 2D diffusion models lacking 3D awareness during the lifting. In this work, we present GeoDream, a novel method that incorporates explicit generalized 3D priors with 2D diffusion priors to enhance the capability of obtaining unambiguous 3D consistent geometric structures without sacrificing diversity or fidelity. Specifically, we first utilize a multi-view diffusion model to generate posed images and then construct cost volume from the predicted image, which serves as native 3D geometric priors, ensuring spatial consistency in 3D space. Subsequently, we further propose to harness 3D geometric priors to unlock the great potential of 3D awareness in 2D diffusion priors via a disentangled design. Notably, disentangling 2D and 3D priors allows us to refine 3D geometric priors further. We justify that the refined 3D geometric priors aid in the 3D-aware capability of 2D diffusion priors, which in turn provides superior guidance for the refinement of 3D geometric priors. Our numerical and visual comparisons demonstrate that GeoDream generates more 3D consistent textured meshes with high-resolution realistic renderings (i.e., 1024 times 1024) and adheres more closely to semantic coherence.

  • 6 authors
·
Nov 29, 2023 1

Hunyuan3D 2.0: Scaling Diffusion Models for High Resolution Textured 3D Assets Generation

We present Hunyuan3D 2.0, an advanced large-scale 3D synthesis system for generating high-resolution textured 3D assets. This system includes two foundation components: a large-scale shape generation model -- Hunyuan3D-DiT, and a large-scale texture synthesis model -- Hunyuan3D-Paint. The shape generative model, built on a scalable flow-based diffusion transformer, aims to create geometry that properly aligns with a given condition image, laying a solid foundation for downstream applications. The texture synthesis model, benefiting from strong geometric and diffusion priors, produces high-resolution and vibrant texture maps for either generated or hand-crafted meshes. Furthermore, we build Hunyuan3D-Studio -- a versatile, user-friendly production platform that simplifies the re-creation process of 3D assets. It allows both professional and amateur users to manipulate or even animate their meshes efficiently. We systematically evaluate our models, showing that Hunyuan3D 2.0 outperforms previous state-of-the-art models, including the open-source models and closed-source models in geometry details, condition alignment, texture quality, and etc. Hunyuan3D 2.0 is publicly released in order to fill the gaps in the open-source 3D community for large-scale foundation generative models. The code and pre-trained weights of our models are available at: https://github.com/Tencent/Hunyuan3D-2

  • 71 authors
·
Jan 21, 2025 10

LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors

We aim to address sparse-view reconstruction of a 3D scene by leveraging priors from large-scale vision models. While recent advancements such as 3D Gaussian Splatting (3DGS) have demonstrated remarkable successes in 3D reconstruction, these methods typically necessitate hundreds of input images that densely capture the underlying scene, making them time-consuming and impractical for real-world applications. However, sparse-view reconstruction is inherently ill-posed and under-constrained, often resulting in inferior and incomplete outcomes. This is due to issues such as failed initialization, overfitting on input images, and a lack of details. To mitigate these challenges, we introduce LM-Gaussian, a method capable of generating high-quality reconstructions from a limited number of images. Specifically, we propose a robust initialization module that leverages stereo priors to aid in the recovery of camera poses and the reliable point clouds. Additionally, a diffusion-based refinement is iteratively applied to incorporate image diffusion priors into the Gaussian optimization process to preserve intricate scene details. Finally, we utilize video diffusion priors to further enhance the rendered images for realistic visual effects. Overall, our approach significantly reduces the data acquisition requirements compared to previous 3DGS methods. We validate the effectiveness of our framework through experiments on various public datasets, demonstrating its potential for high-quality 360-degree scene reconstruction. Visual results are on our website.

  • 3 authors
·
Sep 5, 2024

MaterialFusion: Enhancing Inverse Rendering with Material Diffusion Priors

Recent works in inverse rendering have shown promise in using multi-view images of an object to recover shape, albedo, and materials. However, the recovered components often fail to render accurately under new lighting conditions due to the intrinsic challenge of disentangling albedo and material properties from input images. To address this challenge, we introduce MaterialFusion, an enhanced conventional 3D inverse rendering pipeline that incorporates a 2D prior on texture and material properties. We present StableMaterial, a 2D diffusion model prior that refines multi-lit data to estimate the most likely albedo and material from given input appearances. This model is trained on albedo, material, and relit image data derived from a curated dataset of approximately ~12K artist-designed synthetic Blender objects called BlenderVault. we incorporate this diffusion prior with an inverse rendering framework where we use score distillation sampling (SDS) to guide the optimization of the albedo and materials, improving relighting performance in comparison with previous work. We validate MaterialFusion's relighting performance on 4 datasets of synthetic and real objects under diverse illumination conditions, showing our diffusion-aided approach significantly improves the appearance of reconstructed objects under novel lighting conditions. We intend to publicly release our BlenderVault dataset to support further research in this field.

  • 7 authors
·
Sep 23, 2024 2

Animate3D: Animating Any 3D Model with Multi-view Video Diffusion

Recent advances in 4D generation mainly focus on generating 4D content by distilling pre-trained text or single-view image-conditioned models. It is inconvenient for them to take advantage of various off-the-shelf 3D assets with multi-view attributes, and their results suffer from spatiotemporal inconsistency owing to the inherent ambiguity in the supervision signals. In this work, we present Animate3D, a novel framework for animating any static 3D model. The core idea is two-fold: 1) We propose a novel multi-view video diffusion model (MV-VDM) conditioned on multi-view renderings of the static 3D object, which is trained on our presented large-scale multi-view video dataset (MV-Video). 2) Based on MV-VDM, we introduce a framework combining reconstruction and 4D Score Distillation Sampling (4D-SDS) to leverage the multi-view video diffusion priors for animating 3D objects. Specifically, for MV-VDM, we design a new spatiotemporal attention module to enhance spatial and temporal consistency by integrating 3D and video diffusion models. Additionally, we leverage the static 3D model's multi-view renderings as conditions to preserve its identity. For animating 3D models, an effective two-stage pipeline is proposed: we first reconstruct motions directly from generated multi-view videos, followed by the introduced 4D-SDS to refine both appearance and motion. Qualitative and quantitative experiments demonstrate that Animate3D significantly outperforms previous approaches. Data, code, and models will be open-released.

  • 6 authors
·
Jul 16, 2024 2

Gen-3Diffusion: Realistic Image-to-3D Generation via 2D & 3D Diffusion Synergy

Creating realistic 3D objects and clothed avatars from a single RGB image is an attractive yet challenging problem. Due to its ill-posed nature, recent works leverage powerful prior from 2D diffusion models pretrained on large datasets. Although 2D diffusion models demonstrate strong generalization capability, they cannot guarantee the generated multi-view images are 3D consistent. In this paper, we propose Gen-3Diffusion: Realistic Image-to-3D Generation via 2D & 3D Diffusion Synergy. We leverage a pre-trained 2D diffusion model and a 3D diffusion model via our elegantly designed process that synchronizes two diffusion models at both training and sampling time. The synergy between the 2D and 3D diffusion models brings two major advantages: 1) 2D helps 3D in generalization: the pretrained 2D model has strong generalization ability to unseen images, providing strong shape priors for the 3D diffusion model; 2) 3D helps 2D in multi-view consistency: the 3D diffusion model enhances the 3D consistency of 2D multi-view sampling process, resulting in more accurate multi-view generation. We validate our idea through extensive experiments in image-based objects and clothed avatar generation tasks. Results show that our method generates realistic 3D objects and avatars with high-fidelity geometry and texture. Extensive ablations also validate our design choices and demonstrate the strong generalization ability to diverse clothing and compositional shapes. Our code and pretrained models will be publicly released on https://yuxuan-xue.com/gen-3diffusion.

  • 4 authors
·
Dec 9, 2024

GenCAD: Image-Conditioned Computer-Aided Design Generation with Transformer-Based Contrastive Representation and Diffusion Priors

The creation of manufacturable and editable 3D shapes through Computer-Aided Design (CAD) remains a highly manual and time-consuming task, hampered by the complex topology of boundary representations of 3D solids and unintuitive design tools. While most work in the 3D shape generation literature focuses on representations like meshes, voxels, or point clouds, practical engineering applications demand the modifiability and manufacturability of CAD models and the ability for multi-modal conditional CAD model generation. This paper introduces GenCAD, a generative model that employs autoregressive transformers with a contrastive learning framework and latent diffusion models to transform image inputs into parametric CAD command sequences, resulting in editable 3D shape representations. Extensive evaluations demonstrate that GenCAD significantly outperforms existing state-of-the-art methods in terms of the unconditional and conditional generations of CAD models. Additionally, the contrastive learning framework of GenCAD facilitates the retrieval of CAD models using image queries from large CAD databases, which is a critical challenge within the CAD community. Our results provide a significant step forward in highlighting the potential of generative models to expedite the entire design-to-production pipeline and seamlessly integrate different design modalities.

  • 2 authors
·
Sep 8, 2024 2

GSV3D: Gaussian Splatting-based Geometric Distillation with Stable Video Diffusion for Single-Image 3D Object Generation

Image-based 3D generation has vast applications in robotics and gaming, where high-quality, diverse outputs and consistent 3D representations are crucial. However, existing methods have limitations: 3D diffusion models are limited by dataset scarcity and the absence of strong pre-trained priors, while 2D diffusion-based approaches struggle with geometric consistency. We propose a method that leverages 2D diffusion models' implicit 3D reasoning ability while ensuring 3D consistency via Gaussian-splatting-based geometric distillation. Specifically, the proposed Gaussian Splatting Decoder enforces 3D consistency by transforming SV3D latent outputs into an explicit 3D representation. Unlike SV3D, which only relies on implicit 2D representations for video generation, Gaussian Splatting explicitly encodes spatial and appearance attributes, enabling multi-view consistency through geometric constraints. These constraints correct view inconsistencies, ensuring robust geometric consistency. As a result, our approach simultaneously generates high-quality, multi-view-consistent images and accurate 3D models, providing a scalable solution for single-image-based 3D generation and bridging the gap between 2D Diffusion diversity and 3D structural coherence. Experimental results demonstrate state-of-the-art multi-view consistency and strong generalization across diverse datasets. The code will be made publicly available upon acceptance.

  • 5 authors
·
Mar 8, 2025

Decompositional Neural Scene Reconstruction with Generative Diffusion Prior

Decompositional reconstruction of 3D scenes, with complete shapes and detailed texture of all objects within, is intriguing for downstream applications but remains challenging, particularly with sparse views as input. Recent approaches incorporate semantic or geometric regularization to address this issue, but they suffer significant degradation in underconstrained areas and fail to recover occluded regions. We argue that the key to solving this problem lies in supplementing missing information for these areas. To this end, we propose DP-Recon, which employs diffusion priors in the form of Score Distillation Sampling (SDS) to optimize the neural representation of each individual object under novel views. This provides additional information for the underconstrained areas, but directly incorporating diffusion prior raises potential conflicts between the reconstruction and generative guidance. Therefore, we further introduce a visibility-guided approach to dynamically adjust the per-pixel SDS loss weights. Together these components enhance both geometry and appearance recovery while remaining faithful to input images. Extensive experiments across Replica and ScanNet++ demonstrate that our method significantly outperforms SOTA methods. Notably, it achieves better object reconstruction under 10 views than the baselines under 100 views. Our method enables seamless text-based editing for geometry and appearance through SDS optimization and produces decomposed object meshes with detailed UV maps that support photorealistic Visual effects (VFX) editing. The project page is available at https://dp-recon.github.io/.

  • 7 authors
·
Mar 18, 2025 2

ScaleDreamer: Scalable Text-to-3D Synthesis with Asynchronous Score Distillation

By leveraging the text-to-image diffusion priors, score distillation can synthesize 3D contents without paired text-3D training data. Instead of spending hours of online optimization per text prompt, recent studies have been focused on learning a text-to-3D generative network for amortizing multiple text-3D relations, which can synthesize 3D contents in seconds. However, existing score distillation methods are hard to scale up to a large amount of text prompts due to the difficulties in aligning pretrained diffusion prior with the distribution of rendered images from various text prompts. Current state-of-the-arts such as Variational Score Distillation finetune the pretrained diffusion model to minimize the noise prediction error so as to align the distributions, which are however unstable to train and will impair the model's comprehension capability to numerous text prompts. Based on the observation that the diffusion models tend to have lower noise prediction errors at earlier timesteps, we propose Asynchronous Score Distillation (ASD), which minimizes the noise prediction error by shifting the diffusion timestep to earlier ones. ASD is stable to train and can scale up to 100k prompts. It reduces the noise prediction error without changing the weights of pre-trained diffusion model, thus keeping its strong comprehension capability to prompts. We conduct extensive experiments across different 2D diffusion models, including Stable Diffusion and MVDream, and text-to-3D generators, including Hyper-iNGP, 3DConv-Net and Triplane-Transformer. The results demonstrate ASD's effectiveness in stable 3D generator training, high-quality 3D content synthesis, and its superior prompt-consistency, especially under large prompt corpus.

  • 6 authors
·
Jul 2, 2024

Vision-Language Models as Differentiable Semantic and Spatial Rewards for Text-to-3D Generation

Score Distillation Sampling (SDS) enables high-quality text-to-3D generation by supervising 3D models through the denoising of multi-view 2D renderings, using a pretrained text-to-image diffusion model to align with the input prompt and ensure 3D consistency. However, existing SDS-based methods face two fundamental limitations: (1) their reliance on CLIP-style text encoders leads to coarse semantic alignment and struggles with fine-grained prompts; and (2) 2D diffusion priors lack explicit 3D spatial constraints, resulting in geometric inconsistencies and inaccurate object relationships in multi-object scenes. To address these challenges, we propose VLM3D, a novel text-to-3D generation framework that integrates large vision-language models (VLMs) into the SDS pipeline as differentiable semantic and spatial priors. Unlike standard text-to-image diffusion priors, VLMs leverage rich language-grounded supervision that enables fine-grained prompt alignment. Moreover, their inherent vision language modeling provides strong spatial understanding, which significantly enhances 3D consistency for single-object generation and improves relational reasoning in multi-object scenes. We instantiate VLM3D based on the open-source Qwen2.5-VL model and evaluate it on the GPTeval3D benchmark. Experiments across diverse objects and complex scenes show that VLM3D significantly outperforms prior SDS-based methods in semantic fidelity, geometric coherence, and spatial correctness.

  • 5 authors
·
Sep 19, 2025

Points-to-3D: Bridging the Gap between Sparse Points and Shape-Controllable Text-to-3D Generation

Text-to-3D generation has recently garnered significant attention, fueled by 2D diffusion models trained on billions of image-text pairs. Existing methods primarily rely on score distillation to leverage the 2D diffusion priors to supervise the generation of 3D models, e.g., NeRF. However, score distillation is prone to suffer the view inconsistency problem, and implicit NeRF modeling can also lead to an arbitrary shape, thus leading to less realistic and uncontrollable 3D generation. In this work, we propose a flexible framework of Points-to-3D to bridge the gap between sparse yet freely available 3D points and realistic shape-controllable 3D generation by distilling the knowledge from both 2D and 3D diffusion models. The core idea of Points-to-3D is to introduce controllable sparse 3D points to guide the text-to-3D generation. Specifically, we use the sparse point cloud generated from the 3D diffusion model, Point-E, as the geometric prior, conditioned on a single reference image. To better utilize the sparse 3D points, we propose an efficient point cloud guidance loss to adaptively drive the NeRF's geometry to align with the shape of the sparse 3D points. In addition to controlling the geometry, we propose to optimize the NeRF for a more view-consistent appearance. To be specific, we perform score distillation to the publicly available 2D image diffusion model ControlNet, conditioned on text as well as depth map of the learned compact geometry. Qualitative and quantitative comparisons demonstrate that Points-to-3D improves view consistency and achieves good shape controllability for text-to-3D generation. Points-to-3D provides users with a new way to improve and control text-to-3D generation.

  • 6 authors
·
Jul 25, 2023

You See it, You Got it: Learning 3D Creation on Pose-Free Videos at Scale

Recent 3D generation models typically rely on limited-scale 3D `gold-labels' or 2D diffusion priors for 3D content creation. However, their performance is upper-bounded by constrained 3D priors due to the lack of scalable learning paradigms. In this work, we present See3D, a visual-conditional multi-view diffusion model trained on large-scale Internet videos for open-world 3D creation. The model aims to Get 3D knowledge by solely Seeing the visual contents from the vast and rapidly growing video data -- You See it, You Got it. To achieve this, we first scale up the training data using a proposed data curation pipeline that automatically filters out multi-view inconsistencies and insufficient observations from source videos. This results in a high-quality, richly diverse, large-scale dataset of multi-view images, termed WebVi3D, containing 320M frames from 16M video clips. Nevertheless, learning generic 3D priors from videos without explicit 3D geometry or camera pose annotations is nontrivial, and annotating poses for web-scale videos is prohibitively expensive. To eliminate the need for pose conditions, we introduce an innovative visual-condition - a purely 2D-inductive visual signal generated by adding time-dependent noise to the masked video data. Finally, we introduce a novel visual-conditional 3D generation framework by integrating See3D into a warping-based pipeline for high-fidelity 3D generation. Our numerical and visual comparisons on single and sparse reconstruction benchmarks show that See3D, trained on cost-effective and scalable video data, achieves notable zero-shot and open-world generation capabilities, markedly outperforming models trained on costly and constrained 3D datasets. Please refer to our project page at: https://vision.baai.ac.cn/see3d

  • 7 authors
·
Dec 9, 2024 3

Sketch2PoseNet: Efficient and Generalized Sketch to 3D Human Pose Prediction

3D human pose estimation from sketches has broad applications in computer animation and film production. Unlike traditional human pose estimation, this task presents unique challenges due to the abstract and disproportionate nature of sketches. Previous sketch-to-pose methods, constrained by the lack of large-scale sketch-3D pose annotations, primarily relied on optimization with heuristic rules-an approach that is both time-consuming and limited in generalizability. To address these challenges, we propose a novel approach leveraging a "learn from synthesis" strategy. First, a diffusion model is trained to synthesize sketch images from 2D poses projected from 3D human poses, mimicking disproportionate human structures in sketches. This process enables the creation of a synthetic dataset, SKEP-120K, consisting of 120k accurate sketch-3D pose annotation pairs across various sketch styles. Building on this synthetic dataset, we introduce an end-to-end data-driven framework for estimating human poses and shapes from diverse sketch styles. Our framework combines existing 2D pose detectors and generative diffusion priors for sketch feature extraction with a feed-forward neural network for efficient 2D pose estimation. Multiple heuristic loss functions are incorporated to guarantee geometric coherence between the derived 3D poses and the detected 2D poses while preserving accurate self-contacts. Qualitative, quantitative, and subjective evaluations collectively show that our model substantially surpasses previous ones in both estimation accuracy and speed for sketch-to-pose tasks.

  • 7 authors
·
Oct 30, 2025

SSGaussian: Semantic-Aware and Structure-Preserving 3D Style Transfer

Recent advancements in neural representations, such as Neural Radiance Fields and 3D Gaussian Splatting, have increased interest in applying style transfer to 3D scenes. While existing methods can transfer style patterns onto 3D-consistent neural representations, they struggle to effectively extract and transfer high-level style semantics from the reference style image. Additionally, the stylized results often lack structural clarity and separation, making it difficult to distinguish between different instances or objects within the 3D scene. To address these limitations, we propose a novel 3D style transfer pipeline that effectively integrates prior knowledge from pretrained 2D diffusion models. Our pipeline consists of two key stages: First, we leverage diffusion priors to generate stylized renderings of key viewpoints. Then, we transfer the stylized key views onto the 3D representation. This process incorporates two innovative designs. The first is cross-view style alignment, which inserts cross-view attention into the last upsampling block of the UNet, allowing feature interactions across multiple key views. This ensures that the diffusion model generates stylized key views that maintain both style fidelity and instance-level consistency. The second is instance-level style transfer, which effectively leverages instance-level consistency across stylized key views and transfers it onto the 3D representation. This results in a more structured, visually coherent, and artistically enriched stylization. Extensive qualitative and quantitative experiments demonstrate that our 3D style transfer pipeline significantly outperforms state-of-the-art methods across a wide range of scenes, from forward-facing to challenging 360-degree environments. Visit our project page https://jm-xu.github.io/SSGaussian for immersive visualization.

  • 7 authors
·
Sep 4, 2025

ExScene: Free-View 3D Scene Reconstruction with Gaussian Splatting from a Single Image

The increasing demand for augmented and virtual reality applications has highlighted the importance of crafting immersive 3D scenes from a simple single-view image. However, due to the partial priors provided by single-view input, existing methods are often limited to reconstruct low-consistency 3D scenes with narrow fields of view from single-view input. These limitations make them less capable of generalizing to reconstruct immersive scenes. To address this problem, we propose ExScene, a two-stage pipeline to reconstruct an immersive 3D scene from any given single-view image. ExScene designs a novel multimodal diffusion model to generate a high-fidelity and globally consistent panoramic image. We then develop a panoramic depth estimation approach to calculate geometric information from panorama, and we combine geometric information with high-fidelity panoramic image to train an initial 3D Gaussian Splatting (3DGS) model. Following this, we introduce a GS refinement technique with 2D stable video diffusion priors. We add camera trajectory consistency and color-geometric priors into the denoising process of diffusion to improve color and spatial consistency across image sequences. These refined sequences are then used to fine-tune the initial 3DGS model, leading to better reconstruction quality. Experimental results demonstrate that our ExScene achieves consistent and immersive scene reconstruction using only single-view input, significantly surpassing state-of-the-art baselines.

  • 4 authors
·
Mar 31, 2025

Compositional 3D-aware Video Generation with LLM Director

Significant progress has been made in text-to-video generation through the use of powerful generative models and large-scale internet data. However, substantial challenges remain in precisely controlling individual concepts within the generated video, such as the motion and appearance of specific characters and the movement of viewpoints. In this work, we propose a novel paradigm that generates each concept in 3D representation separately and then composes them with priors from Large Language Models (LLM) and 2D diffusion models. Specifically, given an input textual prompt, our scheme consists of three stages: 1) We leverage LLM as the director to first decompose the complex query into several sub-prompts that indicate individual concepts within the video~(e.g., scene, objects, motions), then we let LLM to invoke pre-trained expert models to obtain corresponding 3D representations of concepts. 2) To compose these representations, we prompt multi-modal LLM to produce coarse guidance on the scales and coordinates of trajectories for the objects. 3) To make the generated frames adhere to natural image distribution, we further leverage 2D diffusion priors and use Score Distillation Sampling to refine the composition. Extensive experiments demonstrate that our method can generate high-fidelity videos from text with diverse motion and flexible control over each concept. Project page: https://aka.ms/c3v.

  • 6 authors
·
Aug 31, 2024 2

PhiP-G: Physics-Guided Text-to-3D Compositional Scene Generation

Text-to-3D asset generation has achieved significant optimization under the supervision of 2D diffusion priors. However, when dealing with compositional scenes, existing methods encounter several challenges: 1). failure to ensure that composite scene layouts comply with physical laws; 2). difficulty in accurately capturing the assets and relationships described in complex scene descriptions; 3). limited autonomous asset generation capabilities among layout approaches leveraging large language models (LLMs). To avoid these compromises, we propose a novel framework for compositional scene generation, PhiP-G, which seamlessly integrates generation techniques with layout guidance based on a world model. Leveraging LLM-based agents, PhiP-G analyzes the complex scene description to generate a scene graph, and integrating a multimodal 2D generation agent and a 3D Gaussian generation method for targeted assets creation. For the stage of layout, PhiP-G employs a physical pool with adhesion capabilities and a visual supervision agent, forming a world model for layout prediction and planning. Extensive experiments demonstrate that PhiP-G significantly enhances the generation quality and physical rationality of the compositional scenes. Notably, PhiP-G attains state-of-the-art (SOTA) performance in CLIP scores, achieves parity with the leading methods in generation quality as measured by the T^3Bench, and improves efficiency by 24x.

  • 4 authors
·
Feb 2, 2025

DiGA3D: Coarse-to-Fine Diffusional Propagation of Geometry and Appearance for Versatile 3D Inpainting

Developing a unified pipeline that enables users to remove, re-texture, or replace objects in a versatile manner is crucial for text-guided 3D inpainting. However, there are still challenges in performing multiple 3D inpainting tasks within a unified framework: 1) Single reference inpainting methods lack robustness when dealing with views that are far from the reference view. 2) Appearance inconsistency arises when independently inpainting multi-view images with 2D diffusion priors; 3) Geometry inconsistency limits performance when there are significant geometric changes in the inpainting regions. To tackle these challenges, we introduce DiGA3D, a novel and versatile 3D inpainting pipeline that leverages diffusion models to propagate consistent appearance and geometry in a coarse-to-fine manner. First, DiGA3D develops a robust strategy for selecting multiple reference views to reduce errors during propagation. Next, DiGA3D designs an Attention Feature Propagation (AFP) mechanism that propagates attention features from the selected reference views to other views via diffusion models to maintain appearance consistency. Furthermore, DiGA3D introduces a Texture-Geometry Score Distillation Sampling (TG-SDS) loss to further improve the geometric consistency of inpainted 3D scenes. Extensive experiments on multiple 3D inpainting tasks demonstrate the effectiveness of our method. The project page is available at https://rorisis.github.io/DiGA3D/.

  • 3 authors
·
Jul 1, 2025

Sparse3D: Distilling Multiview-Consistent Diffusion for Object Reconstruction from Sparse Views

Reconstructing 3D objects from extremely sparse views is a long-standing and challenging problem. While recent techniques employ image diffusion models for generating plausible images at novel viewpoints or for distilling pre-trained diffusion priors into 3D representations using score distillation sampling (SDS), these methods often struggle to simultaneously achieve high-quality, consistent, and detailed results for both novel-view synthesis (NVS) and geometry. In this work, we present Sparse3D, a novel 3D reconstruction method tailored for sparse view inputs. Our approach distills robust priors from a multiview-consistent diffusion model to refine a neural radiance field. Specifically, we employ a controller that harnesses epipolar features from input views, guiding a pre-trained diffusion model, such as Stable Diffusion, to produce novel-view images that maintain 3D consistency with the input. By tapping into 2D priors from powerful image diffusion models, our integrated model consistently delivers high-quality results, even when faced with open-world objects. To address the blurriness introduced by conventional SDS, we introduce the category-score distillation sampling (C-SDS) to enhance detail. We conduct experiments on CO3DV2 which is a multi-view dataset of real-world objects. Both quantitative and qualitative evaluations demonstrate that our approach outperforms previous state-of-the-art works on the metrics regarding NVS and geometry reconstruction.

  • 6 authors
·
Aug 27, 2023

LayerPano3D: Layered 3D Panorama for Hyper-Immersive Scene Generation

3D immersive scene generation is a challenging yet critical task in computer vision and graphics. A desired virtual 3D scene should 1) exhibit omnidirectional view consistency, and 2) allow for free exploration in complex scene hierarchies. Existing methods either rely on successive scene expansion via inpainting or employ panorama representation to represent large FOV scene environments. However, the generated scene suffers from semantic drift during expansion and is unable to handle occlusion among scene hierarchies. To tackle these challenges, we introduce LayerPano3D, a novel framework for full-view, explorable panoramic 3D scene generation from a single text prompt. Our key insight is to decompose a reference 2D panorama into multiple layers at different depth levels, where each layer reveals the unseen space from the reference views via diffusion prior. LayerPano3D comprises multiple dedicated designs: 1) we introduce a novel text-guided anchor view synthesis pipeline for high-quality, consistent panorama generation. 2) We pioneer the Layered 3D Panorama as underlying representation to manage complex scene hierarchies and lift it into 3D Gaussians to splat detailed 360-degree omnidirectional scenes with unconstrained viewing paths. Extensive experiments demonstrate that our framework generates state-of-the-art 3D panoramic scene in both full view consistency and immersive exploratory experience. We believe that LayerPano3D holds promise for advancing 3D panoramic scene creation with numerous applications.

  • 8 authors
·
Aug 23, 2024 2

3DTrajMaster: Mastering 3D Trajectory for Multi-Entity Motion in Video Generation

This paper aims to manipulate multi-entity 3D motions in video generation. Previous methods on controllable video generation primarily leverage 2D control signals to manipulate object motions and have achieved remarkable synthesis results. However, 2D control signals are inherently limited in expressing the 3D nature of object motions. To overcome this problem, we introduce 3DTrajMaster, a robust controller that regulates multi-entity dynamics in 3D space, given user-desired 6DoF pose (location and rotation) sequences of entities. At the core of our approach is a plug-and-play 3D-motion grounded object injector that fuses multiple input entities with their respective 3D trajectories through a gated self-attention mechanism. In addition, we exploit an injector architecture to preserve the video diffusion prior, which is crucial for generalization ability. To mitigate video quality degradation, we introduce a domain adaptor during training and employ an annealed sampling strategy during inference. To address the lack of suitable training data, we construct a 360-Motion Dataset, which first correlates collected 3D human and animal assets with GPT-generated trajectory and then captures their motion with 12 evenly-surround cameras on diverse 3D UE platforms. Extensive experiments show that 3DTrajMaster sets a new state-of-the-art in both accuracy and generalization for controlling multi-entity 3D motions. Project page: http://fuxiao0719.github.io/projects/3dtrajmaster

  • 10 authors
·
Dec 10, 2024 2

Semantic Score Distillation Sampling for Compositional Text-to-3D Generation

Generating high-quality 3D assets from textual descriptions remains a pivotal challenge in computer graphics and vision research. Due to the scarcity of 3D data, state-of-the-art approaches utilize pre-trained 2D diffusion priors, optimized through Score Distillation Sampling (SDS). Despite progress, crafting complex 3D scenes featuring multiple objects or intricate interactions is still difficult. To tackle this, recent methods have incorporated box or layout guidance. However, these layout-guided compositional methods often struggle to provide fine-grained control, as they are generally coarse and lack expressiveness. To overcome these challenges, we introduce a novel SDS approach, Semantic Score Distillation Sampling (SemanticSDS), designed to effectively improve the expressiveness and accuracy of compositional text-to-3D generation. Our approach integrates new semantic embeddings that maintain consistency across different rendering views and clearly differentiate between various objects and parts. These embeddings are transformed into a semantic map, which directs a region-specific SDS process, enabling precise optimization and compositional generation. By leveraging explicit semantic guidance, our method unlocks the compositional capabilities of existing pre-trained diffusion models, thereby achieving superior quality in 3D content generation, particularly for complex objects and scenes. Experimental results demonstrate that our SemanticSDS framework is highly effective for generating state-of-the-art complex 3D content. Code: https://github.com/YangLing0818/SemanticSDS-3D

  • 7 authors
·
Oct 11, 2024 2

Localized Gaussian Splatting Editing with Contextual Awareness

Recent text-guided generation of individual 3D object has achieved great success using diffusion priors. However, these methods are not suitable for object insertion and replacement tasks as they do not consider the background, leading to illumination mismatches within the environment. To bridge the gap, we introduce an illumination-aware 3D scene editing pipeline for 3D Gaussian Splatting (3DGS) representation. Our key observation is that inpainting by the state-of-the-art conditional 2D diffusion model is consistent with background in lighting. To leverage the prior knowledge from the well-trained diffusion models for 3D object generation, our approach employs a coarse-to-fine objection optimization pipeline with inpainted views. In the first coarse step, we achieve image-to-3D lifting given an ideal inpainted view. The process employs 3D-aware diffusion prior from a view-conditioned diffusion model, which preserves illumination present in the conditioning image. To acquire an ideal inpainted image, we introduce an Anchor View Proposal (AVP) algorithm to find a single view that best represents the scene illumination in target region. In the second Texture Enhancement step, we introduce a novel Depth-guided Inpainting Score Distillation Sampling (DI-SDS), which enhances geometry and texture details with the inpainting diffusion prior, beyond the scope of the 3D-aware diffusion prior knowledge in the first coarse step. DI-SDS not only provides fine-grained texture enhancement, but also urges optimization to respect scene lighting. Our approach efficiently achieves local editing with global illumination consistency without explicitly modeling light transport. We demonstrate robustness of our method by evaluating editing in real scenes containing explicit highlight and shadows, and compare against the state-of-the-art text-to-3D editing methods.

  • 7 authors
·
Jul 31, 2024

Boost 3D Reconstruction using Diffusion-based Monocular Camera Calibration

In this paper, we present DM-Calib, a diffusion-based approach for estimating pinhole camera intrinsic parameters from a single input image. Monocular camera calibration is essential for many 3D vision tasks. However, most existing methods depend on handcrafted assumptions or are constrained by limited training data, resulting in poor generalization across diverse real-world images. Recent advancements in stable diffusion models, trained on massive data, have shown the ability to generate high-quality images with varied characteristics. Emerging evidence indicates that these models implicitly capture the relationship between camera focal length and image content. Building on this insight, we explore how to leverage the powerful priors of diffusion models for monocular pinhole camera calibration. Specifically, we introduce a new image-based representation, termed Camera Image, which losslessly encodes the numerical camera intrinsics and integrates seamlessly with the diffusion framework. Using this representation, we reformulate the problem of estimating camera intrinsics as the generation of a dense Camera Image conditioned on an input image. By fine-tuning a stable diffusion model to generate a Camera Image from a single RGB input, we can extract camera intrinsics via a RANSAC operation. We further demonstrate that our monocular calibration method enhances performance across various 3D tasks, including zero-shot metric depth estimation, 3D metrology, pose estimation and sparse-view reconstruction. Extensive experiments on multiple public datasets show that our approach significantly outperforms baselines and provides broad benefits to 3D vision tasks. Code is available at https://github.com/JunyuanDeng/DM-Calib.

  • 8 authors
·
Nov 26, 2024

Human 3Diffusion: Realistic Avatar Creation via Explicit 3D Consistent Diffusion Models

Creating realistic avatars from a single RGB image is an attractive yet challenging problem. Due to its ill-posed nature, recent works leverage powerful prior from 2D diffusion models pretrained on large datasets. Although 2D diffusion models demonstrate strong generalization capability, they cannot provide multi-view shape priors with guaranteed 3D consistency. We propose Human 3Diffusion: Realistic Avatar Creation via Explicit 3D Consistent Diffusion. Our key insight is that 2D multi-view diffusion and 3D reconstruction models provide complementary information for each other, and by coupling them in a tight manner, we can fully leverage the potential of both models. We introduce a novel image-conditioned generative 3D Gaussian Splats reconstruction model that leverages the priors from 2D multi-view diffusion models, and provides an explicit 3D representation, which further guides the 2D reverse sampling process to have better 3D consistency. Experiments show that our proposed framework outperforms state-of-the-art methods and enables the creation of realistic avatars from a single RGB image, achieving high-fidelity in both geometry and appearance. Extensive ablations also validate the efficacy of our design, (1) multi-view 2D priors conditioning in generative 3D reconstruction and (2) consistency refinement of sampling trajectory via the explicit 3D representation. Our code and models will be released on https://yuxuan-xue.com/human-3diffusion.

  • 4 authors
·
Jun 12, 2024

ReconViaGen: Towards Accurate Multi-view 3D Object Reconstruction via Generation

Existing multi-view 3D object reconstruction methods heavily rely on sufficient overlap between input views, where occlusions and sparse coverage in practice frequently yield severe reconstruction incompleteness. Recent advancements in diffusion-based 3D generative techniques offer the potential to address these limitations by leveraging learned generative priors to hallucinate invisible parts of objects, thereby generating plausible 3D structures. However, the stochastic nature of the inference process limits the accuracy and reliability of generation results, preventing existing reconstruction frameworks from integrating such 3D generative priors. In this work, we comprehensively analyze the reasons why diffusion-based 3D generative methods fail to achieve high consistency, including (a) the insufficiency in constructing and leveraging cross-view connections when extracting multi-view image features as conditions, and (b) the poor controllability of iterative denoising during local detail generation, which easily leads to plausible but inconsistent fine geometric and texture details with inputs. Accordingly, we propose ReconViaGen to innovatively integrate reconstruction priors into the generative framework and devise several strategies that effectively address these issues. Extensive experiments demonstrate that our ReconViaGen can reconstruct complete and accurate 3D models consistent with input views in both global structure and local details.Project page: https://jiahao620.github.io/reconviagen.

  • 9 authors
·
Oct 27, 2025

RomanTex: Decoupling 3D-aware Rotary Positional Embedded Multi-Attention Network for Texture Synthesis

Painting textures for existing geometries is a critical yet labor-intensive process in 3D asset generation. Recent advancements in text-to-image (T2I) models have led to significant progress in texture generation. Most existing research approaches this task by first generating images in 2D spaces using image diffusion models, followed by a texture baking process to achieve UV texture. However, these methods often struggle to produce high-quality textures due to inconsistencies among the generated multi-view images, resulting in seams and ghosting artifacts. In contrast, 3D-based texture synthesis methods aim to address these inconsistencies, but they often neglect 2D diffusion model priors, making them challenging to apply to real-world objects To overcome these limitations, we propose RomanTex, a multiview-based texture generation framework that integrates a multi-attention network with an underlying 3D representation, facilitated by our novel 3D-aware Rotary Positional Embedding. Additionally, we incorporate a decoupling characteristic in the multi-attention block to enhance the model's robustness in image-to-texture task, enabling semantically-correct back-view synthesis. Furthermore, we introduce a geometry-related Classifier-Free Guidance (CFG) mechanism to further improve the alignment with both geometries and images. Quantitative and qualitative evaluations, along with comprehensive user studies, demonstrate that our method achieves state-of-the-art results in texture quality and consistency.

  • 9 authors
·
Mar 24, 2025

SweetDreamer: Aligning Geometric Priors in 2D Diffusion for Consistent Text-to-3D

It is inherently ambiguous to lift 2D results from pre-trained diffusion models to a 3D world for text-to-3D generation. 2D diffusion models solely learn view-agnostic priors and thus lack 3D knowledge during the lifting, leading to the multi-view inconsistency problem. We find that this problem primarily stems from geometric inconsistency, and avoiding misplaced geometric structures substantially mitigates the problem in the final outputs. Therefore, we improve the consistency by aligning the 2D geometric priors in diffusion models with well-defined 3D shapes during the lifting, addressing the vast majority of the problem. This is achieved by fine-tuning the 2D diffusion model to be viewpoint-aware and to produce view-specific coordinate maps of canonically oriented 3D objects. In our process, only coarse 3D information is used for aligning. This "coarse" alignment not only resolves the multi-view inconsistency in geometries but also retains the ability in 2D diffusion models to generate detailed and diversified high-quality objects unseen in the 3D datasets. Furthermore, our aligned geometric priors (AGP) are generic and can be seamlessly integrated into various state-of-the-art pipelines, obtaining high generalizability in terms of unseen shapes and visual appearance while greatly alleviating the multi-view inconsistency problem. Our method represents a new state-of-the-art performance with an 85+% consistency rate by human evaluation, while many previous methods are around 30%. Our project page is https://sweetdreamer3d.github.io/

  • 4 authors
·
Oct 4, 2023

Disentangled Diffusion-Based 3D Human Pose Estimation with Hierarchical Spatial and Temporal Denoiser

Recently, diffusion-based methods for monocular 3D human pose estimation have achieved state-of-the-art (SOTA) performance by directly regressing the 3D joint coordinates from the 2D pose sequence. Although some methods decompose the task into bone length and bone direction prediction based on the human anatomical skeleton to explicitly incorporate more human body prior constraints, the performance of these methods is significantly lower than that of the SOTA diffusion-based methods. This can be attributed to the tree structure of the human skeleton. Direct application of the disentangled method could amplify the accumulation of hierarchical errors, propagating through each hierarchy. Meanwhile, the hierarchical information has not been fully explored by the previous methods. To address these problems, a Disentangled Diffusion-based 3D Human Pose Estimation method with Hierarchical Spatial and Temporal Denoiser is proposed, termed DDHPose. In our approach: (1) We disentangle the 3D pose and diffuse the bone length and bone direction during the forward process of the diffusion model to effectively model the human pose prior. A disentanglement loss is proposed to supervise diffusion model learning. (2) For the reverse process, we propose Hierarchical Spatial and Temporal Denoiser (HSTDenoiser) to improve the hierarchical modeling of each joint. Our HSTDenoiser comprises two components: the Hierarchical-Related Spatial Transformer (HRST) and the Hierarchical-Related Temporal Transformer (HRTT). HRST exploits joint spatial information and the influence of the parent joint on each joint for spatial modeling, while HRTT utilizes information from both the joint and its hierarchical adjacent joints to explore the hierarchical temporal correlations among joints. Code and models are available at https://github.com/Andyen512/DDHPose

  • 5 authors
·
Mar 7, 2024

From One to More: Contextual Part Latents for 3D Generation

Recent advances in 3D generation have transitioned from multi-view 2D rendering approaches to 3D-native latent diffusion frameworks that exploit geometric priors in ground truth data. Despite progress, three key limitations persist: (1) Single-latent representations fail to capture complex multi-part geometries, causing detail degradation; (2) Holistic latent coding neglects part independence and interrelationships critical for compositional design; (3) Global conditioning mechanisms lack fine-grained controllability. Inspired by human 3D design workflows, we propose CoPart - a part-aware diffusion framework that decomposes 3D objects into contextual part latents for coherent multi-part generation. This paradigm offers three advantages: i) Reduces encoding complexity through part decomposition; ii) Enables explicit part relationship modeling; iii) Supports part-level conditioning. We further develop a mutual guidance strategy to fine-tune pre-trained diffusion models for joint part latent denoising, ensuring both geometric coherence and foundation model priors. To enable large-scale training, we construct Partverse - a novel 3D part dataset derived from Objaverse through automated mesh segmentation and human-verified annotations. Extensive experiments demonstrate CoPart's superior capabilities in part-level editing, articulated object generation, and scene composition with unprecedented controllability.

  • 13 authors
·
Jul 11, 2025 3

Tinker: Diffusion's Gift to 3D--Multi-View Consistent Editing From Sparse Inputs without Per-Scene Optimization

We introduce Tinker, a versatile framework for high-fidelity 3D editing that operates in both one-shot and few-shot regimes without any per-scene finetuning. Unlike prior techniques that demand extensive per-scene optimization to ensure multi-view consistency or to produce dozens of consistent edited input views, Tinker delivers robust, multi-view consistent edits from as few as one or two images. This capability stems from repurposing pretrained diffusion models, which unlocks their latent 3D awareness. To drive research in this space, we curate the first large-scale multi-view editing dataset and data pipeline, spanning diverse scenes and styles. Building on this dataset, we develop our framework capable of generating multi-view consistent edited views without per-scene training, which consists of two novel components: (1) Referring multi-view editor: Enables precise, reference-driven edits that remain coherent across all viewpoints. (2) Any-view-to-video synthesizer: Leverages spatial-temporal priors from video diffusion to perform high-quality scene completion and novel-view generation even from sparse inputs. Through extensive experiments, Tinker significantly reduces the barrier to generalizable 3D content creation, achieving state-of-the-art performance on editing, novel-view synthesis, and rendering enhancement tasks. We believe that Tinker represents a key step towards truly scalable, zero-shot 3D editing. Project webpage: https://aim-uofa.github.io/Tinker

  • 6 authors
·
Aug 20, 2025 2

DreamCraft3D: Hierarchical 3D Generation with Bootstrapped Diffusion Prior

We present DreamCraft3D, a hierarchical 3D content generation method that produces high-fidelity and coherent 3D objects. We tackle the problem by leveraging a 2D reference image to guide the stages of geometry sculpting and texture boosting. A central focus of this work is to address the consistency issue that existing works encounter. To sculpt geometries that render coherently, we perform score distillation sampling via a view-dependent diffusion model. This 3D prior, alongside several training strategies, prioritizes the geometry consistency but compromises the texture fidelity. We further propose Bootstrapped Score Distillation to specifically boost the texture. We train a personalized diffusion model, Dreambooth, on the augmented renderings of the scene, imbuing it with 3D knowledge of the scene being optimized. The score distillation from this 3D-aware diffusion prior provides view-consistent guidance for the scene. Notably, through an alternating optimization of the diffusion prior and 3D scene representation, we achieve mutually reinforcing improvements: the optimized 3D scene aids in training the scene-specific diffusion model, which offers increasingly view-consistent guidance for 3D optimization. The optimization is thus bootstrapped and leads to substantial texture boosting. With tailored 3D priors throughout the hierarchical generation, DreamCraft3D generates coherent 3D objects with photorealistic renderings, advancing the state-of-the-art in 3D content generation. Code available at https://github.com/deepseek-ai/DreamCraft3D.

  • 7 authors
·
Oct 25, 2023

DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models

Generating high-quality 3D content requires models capable of learning robust distributions of complex scenes and the real-world objects within them. Recent Gaussian-based 3D reconstruction techniques have achieved impressive results in recovering high-fidelity 3D assets from sparse input images by predicting 3D Gaussians in a feed-forward manner. However, these techniques often lack the extensive priors and expressiveness offered by Diffusion Models. On the other hand, 2D Diffusion Models, which have been successfully applied to denoise multiview images, show potential for generating a wide range of photorealistic 3D outputs but still fall short on explicit 3D priors and consistency. In this work, we aim to bridge these two approaches by introducing DSplats, a novel method that directly denoises multiview images using Gaussian Splat-based Reconstructors to produce a diverse array of realistic 3D assets. To harness the extensive priors of 2D Diffusion Models, we incorporate a pretrained Latent Diffusion Model into the reconstructor backbone to predict a set of 3D Gaussians. Additionally, the explicit 3D representation embedded in the denoising network provides a strong inductive bias, ensuring geometrically consistent novel view generation. Our qualitative and quantitative experiments demonstrate that DSplats not only produces high-quality, spatially consistent outputs, but also sets a new standard in single-image to 3D reconstruction. When evaluated on the Google Scanned Objects dataset, DSplats achieves a PSNR of 20.38, an SSIM of 0.842, and an LPIPS of 0.109.

  • 7 authors
·
Dec 11, 2024

Stable-Sim2Real: Exploring Simulation of Real-Captured 3D Data with Two-Stage Depth Diffusion

3D data simulation aims to bridge the gap between simulated and real-captured 3D data, which is a fundamental problem for real-world 3D visual tasks. Most 3D data simulation methods inject predefined physical priors but struggle to capture the full complexity of real data. An optimal approach involves learning an implicit mapping from synthetic to realistic data in a data-driven manner, but progress in this solution has met stagnation in recent studies. This work explores a new solution path of data-driven 3D simulation, called Stable-Sim2Real, based on a novel two-stage depth diffusion model. The initial stage finetunes Stable-Diffusion to generate the residual between the real and synthetic paired depth, producing a stable but coarse depth, where some local regions may deviate from realistic patterns. To enhance this, both the synthetic and initial output depth are fed into a second-stage diffusion, where diffusion loss is adjusted to prioritize these distinct areas identified by a 3D discriminator. We provide a new benchmark scheme to evaluate 3D data simulation methods. Extensive experiments show that training the network with the 3D simulated data derived from our method significantly enhances performance in real-world 3D visual tasks. Moreover, the evaluation demonstrates the high similarity between our 3D simulated data and real-captured patterns. Project page: https://mutianxu.github.io/stable-sim2real/.

  • 6 authors
·
Jul 31, 2025

LiftImage3D: Lifting Any Single Image to 3D Gaussians with Video Generation Priors

Single-image 3D reconstruction remains a fundamental challenge in computer vision due to inherent geometric ambiguities and limited viewpoint information. Recent advances in Latent Video Diffusion Models (LVDMs) offer promising 3D priors learned from large-scale video data. However, leveraging these priors effectively faces three key challenges: (1) degradation in quality across large camera motions, (2) difficulties in achieving precise camera control, and (3) geometric distortions inherent to the diffusion process that damage 3D consistency. We address these challenges by proposing LiftImage3D, a framework that effectively releases LVDMs' generative priors while ensuring 3D consistency. Specifically, we design an articulated trajectory strategy to generate video frames, which decomposes video sequences with large camera motions into ones with controllable small motions. Then we use robust neural matching models, i.e. MASt3R, to calibrate the camera poses of generated frames and produce corresponding point clouds. Finally, we propose a distortion-aware 3D Gaussian splatting representation, which can learn independent distortions between frames and output undistorted canonical Gaussians. Extensive experiments demonstrate that LiftImage3D achieves state-of-the-art performance on two challenging datasets, i.e. LLFF, DL3DV, and Tanks and Temples, and generalizes well to diverse in-the-wild images, from cartoon illustrations to complex real-world scenes.

  • 9 authors
·
Dec 12, 2024

Any-to-3D Generation via Hybrid Diffusion Supervision

Recent progress in 3D object generation has been fueled by the strong priors offered by diffusion models. However, existing models are tailored to specific tasks, accommodating only one modality at a time and necessitating retraining to change modalities. Given an image-to-3D model and a text prompt, a naive approach is to convert text prompts to images and then use the image-to-3D model for generation. This approach is both time-consuming and labor-intensive, resulting in unavoidable information loss during modality conversion. To address this, we introduce XBind, a unified framework for any-to-3D generation using cross-modal pre-alignment techniques. XBind integrates an multimodal-aligned encoder with pre-trained diffusion models to generate 3D objects from any modalities, including text, images, and audio. We subsequently present a novel loss function, termed Modality Similarity (MS) Loss, which aligns the embeddings of the modality prompts and the rendered images, facilitating improved alignment of the 3D objects with multiple modalities. Additionally, Hybrid Diffusion Supervision combined with a Three-Phase Optimization process improves the quality of the generated 3D objects. Extensive experiments showcase XBind's broad generation capabilities in any-to-3D scenarios. To our knowledge, this is the first method to generate 3D objects from any modality prompts. Project page: https://zeroooooooow1440.github.io/.

  • 5 authors
·
Nov 21, 2024

WorldForge: Unlocking Emergent 3D/4D Generation in Video Diffusion Model via Training-Free Guidance

Recent video diffusion models demonstrate strong potential in spatial intelligence tasks due to their rich latent world priors. However, this potential is hindered by their limited controllability and geometric inconsistency, creating a gap between their strong priors and their practical use in 3D/4D tasks. As a result, current approaches often rely on retraining or fine-tuning, which risks degrading pretrained knowledge and incurs high computational costs. To address this, we propose WorldForge, a training-free, inference-time framework composed of three tightly coupled modules. Intra-Step Recursive Refinement introduces a recursive refinement mechanism during inference, which repeatedly optimizes network predictions within each denoising step to enable precise trajectory injection. Flow-Gated Latent Fusion leverages optical flow similarity to decouple motion from appearance in the latent space and selectively inject trajectory guidance into motion-related channels. Dual-Path Self-Corrective Guidance compares guided and unguided denoising paths to adaptively correct trajectory drift caused by noisy or misaligned structural signals. Together, these components inject fine-grained, trajectory-aligned guidance without training, achieving both accurate motion control and photorealistic content generation. Extensive experiments across diverse benchmarks validate our method's superiority in realism, trajectory consistency, and visual fidelity. This work introduces a novel plug-and-play paradigm for controllable video synthesis, offering a new perspective on leveraging generative priors for spatial intelligence.

  • 5 authors
·
Sep 18, 2025 3

Instant 3D Human Avatar Generation using Image Diffusion Models

We present AvatarPopUp, a method for fast, high quality 3D human avatar generation from different input modalities, such as images and text prompts and with control over the generated pose and shape. The common theme is the use of diffusion-based image generation networks that are specialized for each particular task, followed by a 3D lifting network. We purposefully decouple the generation from the 3D modeling which allow us to leverage powerful image synthesis priors, trained on billions of text-image pairs. We fine-tune latent diffusion networks with additional image conditioning to solve tasks such as image generation and back-view prediction, and to support qualitatively different multiple 3D hypotheses. Our partial fine-tuning approach allows to adapt the networks for each task without inducing catastrophic forgetting. In our experiments, we demonstrate that our method produces accurate, high-quality 3D avatars with diverse appearance that respect the multimodal text, image, and body control signals. Our approach can produce a 3D model in as few as 2 seconds, a four orders of magnitude speedup w.r.t. the vast majority of existing methods, most of which solve only a subset of our tasks, and with fewer controls, thus enabling applications that require the controlled 3D generation of human avatars at scale. The project website can be found at https://www.nikoskolot.com/avatarpopup/.

  • 5 authors
·
Jun 11, 2024 2

Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion

In recent years, there has been rapid development in 3D generation models, opening up new possibilities for applications such as simulating the dynamic movements of 3D objects and customizing their behaviors. However, current 3D generative models tend to focus only on surface features such as color and shape, neglecting the inherent physical properties that govern the behavior of objects in the real world. To accurately simulate physics-aligned dynamics, it is essential to predict the physical properties of materials and incorporate them into the behavior prediction process. Nonetheless, predicting the diverse materials of real-world objects is still challenging due to the complex nature of their physical attributes. In this paper, we propose Physics3D, a novel method for learning various physical properties of 3D objects through a video diffusion model. Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model, which enables us to simulate a wide range of materials with high-fidelity capabilities. Moreover, we distill the physical priors from a video diffusion model that contains more understanding of realistic object materials. Extensive experiments demonstrate the effectiveness of our method with both elastic and plastic materials. Physics3D shows great potential for bridging the gap between the physical world and virtual neural space, providing a better integration and application of realistic physical principles in virtual environments. Project page: https://liuff19.github.io/Physics3D.

  • 6 authors
·
Jun 6, 2024 4

MvDrag3D: Drag-based Creative 3D Editing via Multi-view Generation-Reconstruction Priors

Drag-based editing has become popular in 2D content creation, driven by the capabilities of image generative models. However, extending this technique to 3D remains a challenge. Existing 3D drag-based editing methods, whether employing explicit spatial transformations or relying on implicit latent optimization within limited-capacity 3D generative models, fall short in handling significant topology changes or generating new textures across diverse object categories. To overcome these limitations, we introduce MVDrag3D, a novel framework for more flexible and creative drag-based 3D editing that leverages multi-view generation and reconstruction priors. At the core of our approach is the usage of a multi-view diffusion model as a strong generative prior to perform consistent drag editing over multiple rendered views, which is followed by a reconstruction model that reconstructs 3D Gaussians of the edited object. While the initial 3D Gaussians may suffer from misalignment between different views, we address this via view-specific deformation networks that adjust the position of Gaussians to be well aligned. In addition, we propose a multi-view score function that distills generative priors from multiple views to further enhance the view consistency and visual quality. Extensive experiments demonstrate that MVDrag3D provides a precise, generative, and flexible solution for 3D drag-based editing, supporting more versatile editing effects across various object categories and 3D representations.

  • 5 authors
·
Oct 21, 2024