Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCapture the Flag: Uncovering Data Insights with Large Language Models
The extraction of a small number of relevant insights from vast amounts of data is a crucial component of data-driven decision-making. However, accomplishing this task requires considerable technical skills, domain expertise, and human labor. This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data, leveraging recent advances in reasoning and code generation techniques. We propose a new evaluation methodology based on a "capture the flag" principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset. We further propose two proof-of-concept agents, with different inner workings, and compare their ability to capture such flags in a real-world sales dataset. While the work reported here is preliminary, our results are sufficiently interesting to mandate future exploration by the community.
Cybersecurity AI: The World's Top AI Agent for Security Capture-the-Flag (CTF)
Are Capture-the-Flag competitions obsolete? In 2025, Cybersecurity AI (CAI) systematically conquered some of the world's most prestigious hacking competitions, achieving Rank #1 at multiple events and consistently outperforming thousands of human teams. Across five major circuits-HTB's AI vs Humans, Cyber Apocalypse (8,129 teams), Dragos OT CTF, UWSP Pointer Overflow, and the Neurogrid CTF showdown-CAI demonstrated that Jeopardy-style CTFs have become a solved game for well-engineered AI agents. At Neurogrid, CAI captured 41/45 flags to claim the 50,000 top prize; at Dragos OT, it sprinted 37% faster to 10K points than elite human teams; even when deliberately paused mid-competition, it maintained top-tier rankings. Critically, CAI achieved this dominance through our specialized alias1 model architecture, which delivers enterprise-scale AI security operations at unprecedented cost efficiency and with augmented autonomy-reducing 1B token inference costs from 5,940 to just $119, making continuous security agent operation financially viable for the first time. These results force an uncomfortable reckoning: if autonomous agents now dominate competitions designed to identify top security talent at negligible cost, what are CTFs actually measuring? This paper presents comprehensive evidence of AI capability across the 2025 CTF circuit and argues that the security community must urgently transition from Jeopardy-style contests to Attack & Defense formats that genuinely test adaptive reasoning and resilience-capabilities that remain uniquely human, for now.
An Empirical Evaluation of LLMs for Solving Offensive Security Challenges
Capture The Flag (CTF) challenges are puzzles related to computer security scenarios. With the advent of large language models (LLMs), more and more CTF participants are using LLMs to understand and solve the challenges. However, so far no work has evaluated the effectiveness of LLMs in solving CTF challenges with a fully automated workflow. We develop two CTF-solving workflows, human-in-the-loop (HITL) and fully-automated, to examine the LLMs' ability to solve a selected set of CTF challenges, prompted with information about the question. We collect human contestants' results on the same set of questions, and find that LLMs achieve higher success rate than an average human participant. This work provides a comprehensive evaluation of the capability of LLMs in solving real world CTF challenges, from real competition to fully automated workflow. Our results provide references for applying LLMs in cybersecurity education and pave the way for systematic evaluation of offensive cybersecurity capabilities in LLMs.
Cybench: A Framework for Evaluating Cybersecurity Capabilities and Risk of Language Models
Language Model (LM) agents for cybersecurity that are capable of autonomously identifying vulnerabilities and executing exploits have the potential to cause real-world impact. Policymakers, model providers, and other researchers in the AI and cybersecurity communities are interested in quantifying the capabilities of such agents to help mitigate cyberrisk and investigate opportunities for penetration testing. Toward that end, we introduce Cybench, a framework for specifying cybersecurity tasks and evaluating agents on those tasks. We include 40 professional-level Capture the Flag (CTF) tasks from 4 distinct CTF competitions, chosen to be recent, meaningful, and spanning a wide range of difficulties. Each task includes its own description, starter files, and is initialized in an environment where an agent can execute bash commands and observe outputs. Since many tasks are beyond the capabilities of existing LM agents, we introduce subtasks, which break down a task into intermediary steps for more gradated evaluation; we add subtasks for 17 of the 40 tasks. To evaluate agent capabilities, we construct a cybersecurity agent and evaluate 7 models: GPT-4o, Claude 3 Opus, Claude 3.5 Sonnet, Mixtral 8x22b Instruct, Gemini 1.5 Pro, Llama 3 70B Chat, and Llama 3.1 405B Instruct. Without guidance, we find that agents are able to solve only the easiest complete tasks that took human teams up to 11 minutes to solve, with Claude 3.5 Sonnet and GPT-4o having the highest success rates. Finally, subtasks provide more signal for measuring performance compared to unguided runs, with models achieving a 3.2\% higher success rate on complete tasks with subtask-guidance than without subtask-guidance. All code and data are publicly available at https://cybench.github.io
AIRTBench: Measuring Autonomous AI Red Teaming Capabilities in Language Models
We introduce AIRTBench, an AI red teaming benchmark for evaluating language models' ability to autonomously discover and exploit Artificial Intelligence and Machine Learning (AI/ML) security vulnerabilities. The benchmark consists of 70 realistic black-box capture-the-flag (CTF) challenges from the Crucible challenge environment on the Dreadnode platform, requiring models to write python code to interact with and compromise AI systems. Claude-3.7-Sonnet emerged as the clear leader, solving 43 challenges (61% of the total suite, 46.9% overall success rate), with Gemini-2.5-Pro following at 39 challenges (56%, 34.3% overall), GPT-4.5-Preview at 34 challenges (49%, 36.9% overall), and DeepSeek R1 at 29 challenges (41%, 26.9% overall). Our evaluations show frontier models excel at prompt injection attacks (averaging 49% success rates) but struggle with system exploitation and model inversion challenges (below 26%, even for the best performers). Frontier models are far outpacing open-source alternatives, with the best truly open-source model (Llama-4-17B) solving 7 challenges (10%, 1.0% overall), though demonstrating specialized capabilities on certain hard challenges. Compared to human security researchers, large language models (LLMs) solve challenges with remarkable efficiency completing in minutes what typically takes humans hours or days-with efficiency advantages of over 5,000x on hard challenges. Our contribution fills a critical gap in the evaluation landscape, providing the first comprehensive benchmark specifically designed to measure and track progress in autonomous AI red teaming capabilities.
Transformer Guided Coevolution: Improved Team Formation in Multiagent Adversarial Games
We consider the problem of team formation within multiagent adversarial games. We propose BERTeam, a novel algorithm that uses a transformer-based deep neural network with Masked Language Model training to select the best team of players from a trained population. We integrate this with coevolutionary deep reinforcement learning, which trains a diverse set of individual players to choose teams from. We test our algorithm in the multiagent adversarial game Marine Capture-The-Flag, and we find that BERTeam learns non-trivial team compositions that perform well against unseen opponents. For this game, we find that BERTeam outperforms MCAA, an algorithm that similarly optimizes team formation.
CRAKEN: Cybersecurity LLM Agent with Knowledge-Based Execution
Large Language Model (LLM) agents can automate cybersecurity tasks and can adapt to the evolving cybersecurity landscape without re-engineering. While LLM agents have demonstrated cybersecurity capabilities on Capture-The-Flag (CTF) competitions, they have two key limitations: accessing latest cybersecurity expertise beyond training data, and integrating new knowledge into complex task planning. Knowledge-based approaches that incorporate technical understanding into the task-solving automation can tackle these limitations. We present CRAKEN, a knowledge-based LLM agent framework that improves cybersecurity capability through three core mechanisms: contextual decomposition of task-critical information, iterative self-reflected knowledge retrieval, and knowledge-hint injection that transforms insights into adaptive attack strategies. Comprehensive evaluations with different configurations show CRAKEN's effectiveness in multi-stage vulnerability detection and exploitation compared to previous approaches. Our extensible architecture establishes new methodologies for embedding new security knowledge into LLM-driven cybersecurity agentic systems. With a knowledge database of CTF writeups, CRAKEN obtained an accuracy of 22% on NYU CTF Bench, outperforming prior works by 3% and achieving state-of-the-art results. On evaluation of MITRE ATT&CK techniques, CRAKEN solves 25-30% more techniques than prior work, demonstrating improved cybersecurity capabilities via knowledge-based execution. We make our framework open source to public https://github.com/NYU-LLM-CTF/nyuctf_agents_craken.
NYU CTF Bench: A Scalable Open-Source Benchmark Dataset for Evaluating LLMs in Offensive Security
Large Language Models (LLMs) are being deployed across various domains today. However, their capacity to solve Capture the Flag (CTF) challenges in cybersecurity has not been thoroughly evaluated. To address this, we develop a novel method to assess LLMs in solving CTF challenges by creating a scalable, open-source benchmark database specifically designed for these applications. This database includes metadata for LLM testing and adaptive learning, compiling a diverse range of CTF challenges from popular competitions. Utilizing the advanced function calling capabilities of LLMs, we build a fully automated system with an enhanced workflow and support for external tool calls. Our benchmark dataset and automated framework allow us to evaluate the performance of five LLMs, encompassing both black-box and open-source models. This work lays the foundation for future research into improving the efficiency of LLMs in interactive cybersecurity tasks and automated task planning. By providing a specialized benchmark, our project offers an ideal platform for developing, testing, and refining LLM-based approaches to vulnerability detection and resolution. Evaluating LLMs on these challenges and comparing with human performance yields insights into their potential for AI-driven cybersecurity solutions to perform real-world threat management. We make our benchmark dataset open source to public https://github.com/NYU-LLM-CTF/NYU_CTF_Bench along with our playground automated framework https://github.com/NYU-LLM-CTF/llm_ctf_automation.
Pentest-R1: Towards Autonomous Penetration Testing Reasoning Optimized via Two-Stage Reinforcement Learning
Automating penetration testing is crucial for enhancing cybersecurity, yet current Large Language Models (LLMs) face significant limitations in this domain, including poor error handling, inefficient reasoning, and an inability to perform complex end-to-end tasks autonomously. To address these challenges, we introduce Pentest-R1, a novel framework designed to optimize LLM reasoning capabilities for this task through a two-stage reinforcement learning pipeline. We first construct a dataset of over 500 real-world, multi-step walkthroughs, which Pentest-R1 leverages for offline reinforcement learning (RL) to instill foundational attack logic. Subsequently, the LLM is fine-tuned via online RL in an interactive Capture The Flag (CTF) environment, where it learns directly from environmental feedback to develop robust error self-correction and adaptive strategies. Our extensive experiments on the Cybench and AutoPenBench benchmarks demonstrate the framework's effectiveness. On AutoPenBench, Pentest-R1 achieves a 24.2\% success rate, surpassing most state-of-the-art models and ranking second only to Gemini 2.5 Flash. On Cybench, it attains a 15.0\% success rate in unguided tasks, establishing a new state-of-the-art for open-source LLMs and matching the performance of top proprietary models. Ablation studies confirm that the synergy of both training stages is critical to its success.
HackSynth: LLM Agent and Evaluation Framework for Autonomous Penetration Testing
We introduce HackSynth, a novel Large Language Model (LLM)-based agent capable of autonomous penetration testing. HackSynth's dual-module architecture includes a Planner and a Summarizer, which enable it to generate commands and process feedback iteratively. To benchmark HackSynth, we propose two new Capture The Flag (CTF)-based benchmark sets utilizing the popular platforms PicoCTF and OverTheWire. These benchmarks include two hundred challenges across diverse domains and difficulties, providing a standardized framework for evaluating LLM-based penetration testing agents. Based on these benchmarks, extensive experiments are presented, analyzing the core parameters of HackSynth, including creativity (temperature and top-p) and token utilization. Multiple open source and proprietary LLMs were used to measure the agent's capabilities. The experiments show that the agent performed best with the GPT-4o model, better than what the GPT-4o's system card suggests. We also discuss the safety and predictability of HackSynth's actions. Our findings indicate the potential of LLM-based agents in advancing autonomous penetration testing and the importance of robust safeguards. HackSynth and the benchmarks are publicly available to foster research on autonomous cybersecurity solutions.
Training Language Model Agents to Find Vulnerabilities with CTF-Dojo
Large language models (LLMs) have demonstrated exceptional capabilities when trained within executable runtime environments, notably excelling at software engineering tasks through verified feedback loops. Yet, scalable and generalizable execution-grounded environments remain scarce, limiting progress in training more capable ML agents. We introduce CTF-Dojo, the first large-scale executable runtime tailored for training LLMs with verifiable feedback, featuring 658 fully functional Capture-The-Flag (CTF)-style challenges containerized in Docker with guaranteed reproducibility. To enable rapid scaling without manual intervention, we develop CTF-Forge, an automated pipeline that transforms publicly available artifacts into ready-to-use execution environments in minutes, eliminating weeks of expert configuration traditionally required. We trained LLM-based agents on just 486 high-quality, execution-verified trajectories from CTF-Dojo, achieving up to 11.6% absolute gains over strong baselines across three competitive benchmarks: InterCode-CTF, NYU CTF Bench, and Cybench. Our best-performing 32B model reaches 31.9% Pass@1, establishing a new open-weight state-of-the-art that rivals frontier models like DeepSeek-V3-0324 and Gemini-2.5-Flash. By framing CTF-style tasks as a benchmark for executable-agent learning, CTF-Dojo demonstrates that execution-grounded training signals are not only effective but pivotal in advancing high-performance ML agents without dependence on costly proprietary systems.
Teams of LLM Agents can Exploit Zero-Day Vulnerabilities
LLM agents have become increasingly sophisticated, especially in the realm of cybersecurity. Researchers have shown that LLM agents can exploit real-world vulnerabilities when given a description of the vulnerability and toy capture-the-flag problems. However, these agents still perform poorly on real-world vulnerabilities that are unknown to the agent ahead of time (zero-day vulnerabilities). In this work, we show that teams of LLM agents can exploit real-world, zero-day vulnerabilities. Prior agents struggle with exploring many different vulnerabilities and long-range planning when used alone. To resolve this, we introduce HPTSA, a system of agents with a planning agent that can launch subagents. The planning agent explores the system and determines which subagents to call, resolving long-term planning issues when trying different vulnerabilities. We construct a benchmark of 15 real-world vulnerabilities and show that our team of agents improve over prior work by up to 4.5times.
EnIGMA: Interactive Tools Substantially Assist LM Agents in Finding Security Vulnerabilities
Although language model (LM) agents have demonstrated increased performance in multiple domains, including coding and web-browsing, their success in cybersecurity has been limited. We present EnIGMA, an LM agent for autonomously solving Capture The Flag (CTF) challenges. We introduce new tools and interfaces to improve the agent's ability to find and exploit security vulnerabilities, focusing on interactive terminal programs. These novel Interactive Agent Tools enable LM agents, for the first time, to run interactive utilities, such as a debugger and a server connection tool, which are essential for solving these challenges. Empirical analysis on 390 CTF challenges across four benchmarks demonstrate that these new tools and interfaces substantially improve our agent's performance, achieving state-of-the-art results on NYU CTF, Intercode-CTF, and CyBench. Finally, we analyze data leakage, developing new methods to quantify it and identifying a new phenomenon we term soliloquizing, where the model self-generates hallucinated observations without interacting with the environment. Our code and development dataset are available at https://github.com/SWE-agent/SWE-agent/tree/v0.7 and https://github.com/NYU-LLM-CTF/NYU_CTF_Bench/tree/main/development respectively.
InterCode: Standardizing and Benchmarking Interactive Coding with Execution Feedback
Humans write code in a fundamentally interactive manner and rely on constant execution feedback to correct errors, resolve ambiguities, and decompose tasks. While LLMs have recently exhibited promising coding capabilities, current coding benchmarks mostly consider a static instruction-to-code sequence transduction process, which has the potential for error propagation and a disconnect between the generated code and its final execution environment. To address this gap, we introduce InterCode, a lightweight, flexible, and easy-to-use framework of interactive coding as a standard reinforcement learning (RL) environment, with code as actions and execution feedback as observations. Our framework is language and platform agnostic, uses self-contained Docker environments to provide safe and reproducible execution, and is compatible out-of-the-box with traditional seq2seq coding methods, while enabling the development of new methods for interactive code generation. We use InterCode to create two interactive code environments with Bash and SQL as action spaces, leveraging data from the static Spider and NL2Bash datasets. We demonstrate InterCode's viability as a testbed by evaluating multiple state-of-the-art LLMs configured with different prompting strategies such as ReAct and Plan & Solve. Our results showcase the benefits of interactive code generation and demonstrate that InterCode can serve as a challenging benchmark for advancing code understanding and generation capabilities. InterCode is designed to be easily extensible and can even be used to incorporate new tasks such as Capture the Flag, a popular coding puzzle that is inherently multi-step and involves multiple programming languages. Project site with code and data: https://intercode-benchmark.github.io
Open-Ended Learning Leads to Generally Capable Agents
In this work we create agents that can perform well beyond a single, individual task, that exhibit much wider generalisation of behaviour to a massive, rich space of challenges. We define a universe of tasks within an environment domain and demonstrate the ability to train agents that are generally capable across this vast space and beyond. The environment is natively multi-agent, spanning the continuum of competitive, cooperative, and independent games, which are situated within procedurally generated physical 3D worlds. The resulting space is exceptionally diverse in terms of the challenges posed to agents, and as such, even measuring the learning progress of an agent is an open research problem. We propose an iterative notion of improvement between successive generations of agents, rather than seeking to maximise a singular objective, allowing us to quantify progress despite tasks being incomparable in terms of achievable rewards. We show that through constructing an open-ended learning process, which dynamically changes the training task distributions and training objectives such that the agent never stops learning, we achieve consistent learning of new behaviours. The resulting agent is able to score reward in every one of our humanly solvable evaluation levels, with behaviour generalising to many held-out points in the universe of tasks. Examples of this zero-shot generalisation include good performance on Hide and Seek, Capture the Flag, and Tag. Through analysis and hand-authored probe tasks we characterise the behaviour of our agent, and find interesting emergent heuristic behaviours such as trial-and-error experimentation, simple tool use, option switching, and cooperation. Finally, we demonstrate that the general capabilities of this agent could unlock larger scale transfer of behaviour through cheap finetuning.
Improving LLM Agents with Reinforcement Learning on Cryptographic CTF Challenges
Large Language Models (LLMs) still struggle with the structured reasoning and tool-assisted computation needed for problem solving in cybersecurity applications. In this work, we introduce "random-crypto", a cryptographic Capture-the-Flag (CTF) challenge generator framework that we use to fine-tune a tool-augmented Llama-3.1-8B with Guided Reinforcement Prompt Optimisation (GRPO), allowing the agent to iteratively write and execute Python inside an isolated REPL. GRPO yields a +53% absolute jump in Pass@8 on unseen "random-crypto" tasks (0.35 -> 0.88) and raises Majority@8 to 0.41. The fine-tuned agent also generalizes to an external dataset. On a subset of picoCTF cryptography problems, it improves Pass@8 by +13 pp. Ablations show the gains stem from more reliable tool invocation and code synthesis, rather than superficial prompt adaptation.
OCCULT: Evaluating Large Language Models for Offensive Cyber Operation Capabilities
The prospect of artificial intelligence (AI) competing in the adversarial landscape of cyber security has long been considered one of the most impactful, challenging, and potentially dangerous applications of AI. Here, we demonstrate a new approach to assessing AI's progress towards enabling and scaling real-world offensive cyber operations (OCO) tactics in use by modern threat actors. We detail OCCULT, a lightweight operational evaluation framework that allows cyber security experts to contribute to rigorous and repeatable measurement of the plausible cyber security risks associated with any given large language model (LLM) or AI employed for OCO. We also prototype and evaluate three very different OCO benchmarks for LLMs that demonstrate our approach and serve as examples for building benchmarks under the OCCULT framework. Finally, we provide preliminary evaluation results to demonstrate how this framework allows us to move beyond traditional all-or-nothing tests, such as those crafted from educational exercises like capture-the-flag environments, to contextualize our indicators and warnings in true cyber threat scenarios that present risks to modern infrastructure. We find that there has been significant recent advancement in the risks of AI being used to scale realistic cyber threats. For the first time, we find a model (DeepSeek-R1) is capable of correctly answering over 90% of challenging offensive cyber knowledge tests in our Threat Actor Competency Test for LLMs (TACTL) multiple-choice benchmarks. We also show how Meta's Llama and Mistral's Mixtral model families show marked performance improvements over earlier models against our benchmarks where LLMs act as offensive agents in MITRE's high-fidelity offensive and defensive cyber operations simulation environment, CyberLayer.
Does Role-Playing Chatbots Capture the Character Personalities? Assessing Personality Traits for Role-Playing Chatbots
The emergence of large-scale pretrained language models has revolutionized the capabilities of new AI application, especially in the realm of crafting chatbots with distinct personas. Given the "stimulus-response" nature of chatbots, this paper unveils an innovative open-ended interview-style approach for personality assessment on role-playing chatbots, which offers a richer comprehension of their intrinsic personalities. We conduct personality assessments on 32 role-playing chatbots created by the ChatHaruhi library, across both the Big Five and MBTI dimensions, and measure their alignment with human perception. Evaluation results underscore that modern role-playing chatbots based on LLMs can effectively portray personality traits of corresponding characters, with an alignment rate of 82.8% compared with human-perceived personalities. Besides, we also suggest potential strategies for shaping chatbots' personalities. Hence, this paper serves as a cornerstone study for role-playing chatbots that intersects computational linguistics and psychology. Our resources are available at https://github.com/LC1332/Chat-Haruhi-Suzumiya
How Do Large Language Models Capture the Ever-changing World Knowledge? A Review of Recent Advances
Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at https://github.com/hyintell/awesome-refreshing-llms
A Tale of Two Structures: Do LLMs Capture the Fractal Complexity of Language?
Language exhibits a fractal structure in its information-theoretic complexity (i.e. bits per token), with self-similarity across scales and long-range dependence (LRD). In this work, we investigate whether large language models (LLMs) can replicate such fractal characteristics and identify conditions-such as temperature setting and prompting method-under which they may fail. Moreover, we find that the fractal parameters observed in natural language are contained within a narrow range, whereas those of LLMs' output vary widely, suggesting that fractal parameters might prove helpful in detecting a non-trivial portion of LLM-generated texts. Notably, these findings, and many others reported in this work, are robust to the choice of the architecture; e.g. Gemini 1.0 Pro, Mistral-7B and Gemma-2B. We also release a dataset comprising of over 240,000 articles generated by various LLMs (both pretrained and instruction-tuned) with different decoding temperatures and prompting methods, along with their corresponding human-generated texts. We hope that this work highlights the complex interplay between fractal properties, prompting, and statistical mimicry in LLMs, offering insights for generating, evaluating and detecting synthetic texts.
Chasing the Tail: Effective Rubric-based Reward Modeling for Large Language Model Post-Training
Reinforcement fine-tuning (RFT) often suffers from reward over-optimization, where a policy model hacks the reward signals to achieve high scores while producing low-quality outputs. Our theoretical analysis shows that the key lies in reward misspecification at the high-reward tail: the inability to reliably distinguish Excellent responses from merely Great ones. This motivate us to focus on the high-reward region. However, such tail examples are scarce under the base LLM. While off-policy exemplars (e.g. from stronger models or rewrites) are easier to obtain, naively training on them yields a misspecified reward for the policy we aim to align. To address this, we study rubric-based rewards. By design, rubrics can leverage off-policy examples while remaining insensitive to their artifacts. To elicit rubrics that capture the high-reward tail, we highlight the importance of distinguishing among great and diverse responses, and introduce a workflow to implement this idea. We empirically demonstrate that rubric-based rewards substantially mitigate reward over-optimization and deliver effective LLM post-training improvements. Our code can be accessed at https://github.com/Jun-Kai-Zhang/rubrics.git .
Dressing the Imagination: A Dataset for AI-Powered Translation of Text into Fashion Outfits and A Novel KAN Adapter for Enhanced Feature Adaptation
Specialized datasets that capture the fashion industry's rich language and styling elements can boost progress in AI-driven fashion design. We present FLORA, (Fashion Language Outfit Representation for Apparel Generation), the first comprehensive dataset containing 4,330 curated pairs of fashion outfits and corresponding textual descriptions. Each description utilizes industry-specific terminology and jargon commonly used by professional fashion designers, providing precise and detailed insights into the outfits. Hence, the dataset captures the delicate features and subtle stylistic elements necessary to create high-fidelity fashion designs. We demonstrate that fine-tuning generative models on the FLORA dataset significantly enhances their capability to generate accurate and stylistically rich images from textual descriptions of fashion sketches. FLORA will catalyze the creation of advanced AI models capable of comprehending and producing subtle, stylistically rich fashion designs. It will also help fashion designers and end-users to bring their ideas to life. As a second orthogonal contribution, we introduce NeRA (Nonlinear low-rank Expressive Representation Adapter), a novel adapter architecture based on Kolmogorov-Arnold Networks (KAN). Unlike traditional PEFT techniques such as LoRA, LoKR, DoRA, and LoHA that use MLP adapters, NeRA uses learnable spline-based nonlinear transformations, enabling superior modeling of complex semantic relationships, achieving strong fidelity, faster convergence and semantic alignment. Extensive experiments on our proposed FLORA and LAION-5B datasets validate the superiority of NeRA over existing adapters. We will open-source both the FLORA dataset and our implementation code.
Decoding the Enigma: Benchmarking Humans and AIs on the Many Facets of Working Memory
Working memory (WM), a fundamental cognitive process facilitating the temporary storage, integration, manipulation, and retrieval of information, plays a vital role in reasoning and decision-making tasks. Robust benchmark datasets that capture the multifaceted nature of WM are crucial for the effective development and evaluation of AI WM models. Here, we introduce a comprehensive Working Memory (WorM) benchmark dataset for this purpose. WorM comprises 10 tasks and a total of 1 million trials, assessing 4 functionalities, 3 domains, and 11 behavioral and neural characteristics of WM. We jointly trained and tested state-of-the-art recurrent neural networks and transformers on all these tasks. We also include human behavioral benchmarks as an upper bound for comparison. Our results suggest that AI models replicate some characteristics of WM in the brain, most notably primacy and recency effects, and neural clusters and correlates specialized for different domains and functionalities of WM. In the experiments, we also reveal some limitations in existing models to approximate human behavior. This dataset serves as a valuable resource for communities in cognitive psychology, neuroscience, and AI, offering a standardized framework to compare and enhance WM models, investigate WM's neural underpinnings, and develop WM models with human-like capabilities. Our source code and data are available at https://github.com/ZhangLab-DeepNeuroCogLab/WorM.
The path to a goal: Understanding soccer possessions via path signatures
We present a novel framework for predicting next actions in soccer possessions by leveraging path signatures to encode their complex spatio-temporal structure. Unlike existing approaches, we do not rely on fixed historical windows and handcrafted features, but rather encode the entire recent possession, thereby avoiding the inclusion of potentially irrelevant or misleading historical information. Path signatures naturally capture the order and interaction of events, providing a mathematically grounded feature encoding for variable-length time series of irregular sampling frequencies without the necessity for manual feature engineering. Our proposed approach outperforms a transformer-based benchmark across various loss metrics and considerably reduces computational cost. Building on these results, we introduce a new possession evaluation metric based on well-established frameworks in soccer analytics, incorporating both predicted action type probabilities and action location. Our metric shows greater reliability than existing metrics in domain-specific comparisons. Finally, we validate our approach through a detailed analysis of the 2017/18 Premier League season and discuss further applications and future extensions.
The Majority Vote Paradigm Shift: When Popular Meets Optimal
Reliably labelling data typically requires annotations from multiple human workers. However, humans are far from being perfect. Hence, it is a common practice to aggregate labels gathered from multiple annotators to make a more confident estimate of the true label. Among many aggregation methods, the simple and well known Majority Vote (MV) selects the class label polling the highest number of votes. However, despite its importance, the optimality of MV's label aggregation has not been extensively studied. We address this gap in our work by characterising the conditions under which MV achieves the theoretically optimal lower bound on label estimation error. Our results capture the tolerable limits on annotation noise under which MV can optimally recover labels for a given class distribution. This certificate of optimality provides a more principled approach to model selection for label aggregation as an alternative to otherwise inefficient practices that sometimes include higher experts, gold labels, etc., that are all marred by the same human uncertainty despite huge time and monetary costs. Experiments on both synthetic and real world data corroborate our theoretical findings.
PGN: The RNN's New Successor is Effective for Long-Range Time Series Forecasting
Due to the recurrent structure of RNN, the long information propagation path poses limitations in capturing long-term dependencies, gradient explosion/vanishing issues, and inefficient sequential execution. Based on this, we propose a novel paradigm called Parallel Gated Network (PGN) as the new successor to RNN. PGN directly captures information from previous time steps through the designed Historical Information Extraction (HIE) layer and leverages gated mechanisms to select and fuse it with the current time step information. This reduces the information propagation path to O(1), effectively addressing the limitations of RNN. To enhance PGN's performance in long-range time series forecasting tasks, we propose a novel temporal modeling framework called Temporal PGN (TPGN). TPGN incorporates two branches to comprehensively capture the semantic information of time series. One branch utilizes PGN to capture long-term periodic patterns while preserving their local characteristics. The other branch employs patches to capture short-term information and aggregate the global representation of the series. TPGN achieves a theoretical complexity of O(L), ensuring efficiency in its operations. Experimental results on five benchmark datasets demonstrate the state-of-the-art (SOTA) performance and high efficiency of TPGN, further confirming the effectiveness of PGN as the new successor to RNN in long-range time series forecasting. The code is available in this repository: https://github.com/Water2sea/TPGN.
Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: II. Anisotropic large-scale coherence in hot gas, galaxies, and dark matter
Statistics that capture the directional dependence of the baryon distribution in the cosmic web enable unique tests of cosmology and astrophysical feedback. We use constrained oriented stacking of thermal Sunyaev-Zel'dovich (tSZ) maps to measure the anisotropic distribution of hot gas 2.5-40 Mpc away from galaxy clusters embedded in massive filaments and superclusters. The cluster selection and orientation (at a scale of sim15 Mpc) use Dark Energy Survey (DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope Data Release 6 enable a sim3times more significant measurement of the extended gas compared to the technique's proof-of-concept. Decomposing stacks into cosine multipoles of order m, we detect a dipole (m=1) and quadrupole (m=2) at 8-10sigma, as well as evidence for m=4 signal at up to 6sigma, indicating sensitivity to late-time non-Gaussianity. We compare to the Cardinal simulations with spherical gas models pasted onto dark matter halos. The fiducial tSZ data can discriminate between two models that deplete pressure differently in low-mass halos (mimicking astrophysical feedback), preferring higher average pressure in extended structures. However, uncertainty in the amount of cosmic infrared background contamination reduces the constraining power. Additionally, we apply the technique to DES galaxy density and weak lensing to study for the first time their oriented relationships with tSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales, we observe dependence on redshift but not shape or radial distance. Thus, on large scales, the superclustering of gas pressure, galaxies, and total matter is coherent in shape and extent.
DiffMorpher: Unleashing the Capability of Diffusion Models for Image Morphing
Diffusion models have achieved remarkable image generation quality surpassing previous generative models. However, a notable limitation of diffusion models, in comparison to GANs, is their difficulty in smoothly interpolating between two image samples, due to their highly unstructured latent space. Such a smooth interpolation is intriguing as it naturally serves as a solution for the image morphing task with many applications. In this work, we present DiffMorpher, the first approach enabling smooth and natural image interpolation using diffusion models. Our key idea is to capture the semantics of the two images by fitting two LoRAs to them respectively, and interpolate between both the LoRA parameters and the latent noises to ensure a smooth semantic transition, where correspondence automatically emerges without the need for annotation. In addition, we propose an attention interpolation and injection technique and a new sampling schedule to further enhance the smoothness between consecutive images. Extensive experiments demonstrate that DiffMorpher achieves starkly better image morphing effects than previous methods across a variety of object categories, bridging a critical functional gap that distinguished diffusion models from GANs.
Hear The Flow: Optical Flow-Based Self-Supervised Visual Sound Source Localization
Learning to localize the sound source in videos without explicit annotations is a novel area of audio-visual research. Existing work in this area focuses on creating attention maps to capture the correlation between the two modalities to localize the source of the sound. In a video, oftentimes, the objects exhibiting movement are the ones generating the sound. In this work, we capture this characteristic by modeling the optical flow in a video as a prior to better aid in localizing the sound source. We further demonstrate that the addition of flow-based attention substantially improves visual sound source localization. Finally, we benchmark our method on standard sound source localization datasets and achieve state-of-the-art performance on the Soundnet Flickr and VGG Sound Source datasets. Code: https://github.com/denfed/heartheflow.
How does fake news use a thumbnail? CLIP-based Multimodal Detection on the Unrepresentative News Image
This study investigates how fake news uses a thumbnail for a news article with a focus on whether a news article's thumbnail represents the news content correctly. A news article shared with an irrelevant thumbnail can mislead readers into having a wrong impression of the issue, especially in social media environments where users are less likely to click the link and consume the entire content. We propose to capture the degree of semantic incongruity in the multimodal relation by using the pretrained CLIP representation. From a source-level analysis, we found that fake news employs a more incongruous image to the main content than general news. Going further, we attempted to detect news articles with image-text incongruity. Evaluation experiments suggest that CLIP-based methods can successfully detect news articles in which the thumbnail is semantically irrelevant to news text. This study contributes to the research by providing a novel view on tackling online fake news and misinformation. Code and datasets are available at https://github.com/ssu-humane/fake-news-thumbnail.
MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures
Evaluating large language models (LLMs) is challenging. Traditional ground-truth-based benchmarks fail to capture the comprehensiveness and nuance of real-world queries, while LLM-as-judge benchmarks suffer from grading biases and limited query quantity. Both of them may also become contaminated over time. User-facing evaluation, such as Chatbot Arena, provides reliable signals but is costly and slow. In this work, we propose MixEval, a new paradigm for establishing efficient, gold-standard LLM evaluation by strategically mixing off-the-shelf benchmarks. It bridges (1) comprehensive and well-distributed real-world user queries and (2) efficient and fairly-graded ground-truth-based benchmarks, by matching queries mined from the web with similar queries from existing benchmarks. Based on MixEval, we further build MixEval-Hard, which offers more room for model improvement. Our benchmarks' advantages lie in (1) a 0.96 model ranking correlation with Chatbot Arena arising from the highly impartial query distribution and grading mechanism, (2) fast, cheap, and reproducible execution (6% of the time and cost of MMLU), and (3) dynamic evaluation enabled by the rapid and stable data update pipeline. We provide extensive meta-evaluation and analysis for our and existing LLM benchmarks to deepen the community's understanding of LLM evaluation and guide future research directions.
Guiding a Diffusion Transformer with the Internal Dynamics of Itself
The diffusion model presents a powerful ability to capture the entire (conditional) data distribution. However, due to the lack of sufficient training and data to learn to cover low-probability areas, the model will be penalized for failing to generate high-quality images corresponding to these areas. To achieve better generation quality, guidance strategies such as classifier free guidance (CFG) can guide the samples to the high-probability areas during the sampling stage. However, the standard CFG often leads to over-simplified or distorted samples. On the other hand, the alternative line of guiding diffusion model with its bad version is limited by carefully designed degradation strategies, extra training and additional sampling steps. In this paper, we proposed a simple yet effective strategy Internal Guidance (IG), which introduces an auxiliary supervision on the intermediate layer during training process and extrapolates the intermediate and deep layer's outputs to obtain generative results during sampling process. This simple strategy yields significant improvements in both training efficiency and generation quality on various baselines. On ImageNet 256x256, SiT-XL/2+IG achieves FID=5.31 and FID=1.75 at 80 and 800 epochs. More impressively, LightningDiT-XL/1+IG achieves FID=1.34 which achieves a large margin between all of these methods. Combined with CFG, LightningDiT-XL/1+IG achieves the current state-of-the-art FID of 1.19.
Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice
As the possibilities for Artificial Intelligence (AI) have grown, so have concerns regarding its impacts on society and the environment. However, these issues are often raised separately; i.e. carbon footprint analyses of AI models typically do not consider how the pursuit of scale has contributed towards building models that are both inaccessible to most researchers in terms of cost and disproportionately harmful to the environment. On the other hand, model audits that aim to evaluate model performance and disparate impacts mostly fail to engage with the environmental ramifications of AI models and how these fit into their auditing approaches. In this separation, both research directions fail to capture the depth of analysis that can be explored by considering the two in parallel and the potential solutions for making informed choices that can be developed at their convergence. In this essay, we build upon work carried out in AI and in sister communities, such as philosophy and sustainable development, to make more deliberate connections around topics such as generalizability, transparency, evaluation and equity across AI research and practice. We argue that the efforts aiming to study AI's ethical ramifications should be made in tandem with those evaluating its impacts on the environment, and we conclude with a proposal of best practices to better integrate AI ethics and sustainability in AI research and practice.
Solaris: A Foundation Model of the Sun
Foundation models have demonstrated remarkable success across various scientific domains, motivating our exploration of their potential in solar physics. In this paper, we present Solaris, the first foundation model for forecasting the Sun's atmosphere. We leverage 13 years of full-disk, multi-wavelength solar imagery from the Solar Dynamics Observatory, spanning a complete solar cycle, to pre-train Solaris for 12-hour interval forecasting. Solaris is built on a large-scale 3D Swin Transformer architecture with 109 million parameters. We demonstrate Solaris' ability to generalize by fine-tuning on a low-data regime using a single wavelength (1700 {\AA}), that was not included in pre-training, outperforming models trained from scratch on this specific wavelength. Our results indicate that Solaris can effectively capture the complex dynamics of the solar atmosphere and transform solar forecasting.
Unveiling the Multi-Annotation Process: Examining the Influence of Annotation Quantity and Instance Difficulty on Model Performance
The NLP community has long advocated for the construction of multi-annotator datasets to better capture the nuances of language interpretation, subjectivity, and ambiguity. This paper conducts a retrospective study to show how performance scores can vary when a dataset expands from a single annotation per instance to multiple annotations. We propose a novel multi-annotator simulation process to generate datasets with varying annotation budgets. We show that similar datasets with the same annotation budget can lead to varying performance gains. Our findings challenge the popular belief that models trained on multi-annotation examples always lead to better performance than models trained on single or few-annotation examples.
Modelling the 5G Energy Consumption using Real-world Data: Energy Fingerprint is All You Need
The introduction of fifth-generation (5G) radio technology has revolutionized communications, bringing unprecedented automation, capacity, connectivity, and ultra-fast, reliable communications. However, this technological leap comes with a substantial increase in energy consumption, presenting a significant challenge. To improve the energy efficiency of 5G networks, it is imperative to develop sophisticated models that accurately reflect the influence of base station (BS) attributes and operational conditions on energy usage.Importantly, addressing the complexity and interdependencies of these diverse features is particularly challenging, both in terms of data processing and model architecture design. This paper proposes a novel 5G base stations energy consumption modelling method by learning from a real-world dataset used in the ITU 5G Base Station Energy Consumption Modelling Challenge in which our model ranked second. Unlike existing methods that omit the Base Station Identifier (BSID) information and thus fail to capture the unique energy fingerprint in different base stations, we incorporate the BSID into the input features and encoding it with an embedding layer for precise representation. Additionally, we introduce a novel masked training method alongside an attention mechanism to further boost the model's generalization capabilities and accuracy. After evaluation, our method demonstrates significant improvements over existing models, reducing Mean Absolute Percentage Error (MAPE) from 12.75% to 4.98%, leading to a performance gain of more than 60%.
Open the Black Box: Step-based Policy Updates for Temporally-Correlated Episodic Reinforcement Learning
Current advancements in reinforcement learning (RL) have predominantly focused on learning step-based policies that generate actions for each perceived state. While these methods efficiently leverage step information from environmental interaction, they often ignore the temporal correlation between actions, resulting in inefficient exploration and unsmooth trajectories that are challenging to implement on real hardware. Episodic RL (ERL) seeks to overcome these challenges by exploring in parameters space that capture the correlation of actions. However, these approaches typically compromise data efficiency, as they treat trajectories as opaque black boxes. In this work, we introduce a novel ERL algorithm, Temporally-Correlated Episodic RL (TCE), which effectively utilizes step information in episodic policy updates, opening the 'black box' in existing ERL methods while retaining the smooth and consistent exploration in parameter space. TCE synergistically combines the advantages of step-based and episodic RL, achieving comparable performance to recent ERL methods while maintaining data efficiency akin to state-of-the-art (SoTA) step-based RL.
On Characterizing the Capacity of Neural Networks using Algebraic Topology
The learnability of different neural architectures can be characterized directly by computable measures of data complexity. In this paper, we reframe the problem of architecture selection as understanding how data determines the most expressive and generalizable architectures suited to that data, beyond inductive bias. After suggesting algebraic topology as a measure for data complexity, we show that the power of a network to express the topological complexity of a dataset in its decision region is a strictly limiting factor in its ability to generalize. We then provide the first empirical characterization of the topological capacity of neural networks. Our empirical analysis shows that at every level of dataset complexity, neural networks exhibit topological phase transitions. This observation allowed us to connect existing theory to empirically driven conjectures on the choice of architectures for fully-connected neural networks.
Memory in the Age of AI Agents
Memory has emerged, and will continue to remain, a core capability of foundation model-based agents. As research on agent memory rapidly expands and attracts unprecedented attention, the field has also become increasingly fragmented. Existing works that fall under the umbrella of agent memory often differ substantially in their motivations, implementations, and evaluation protocols, while the proliferation of loosely defined memory terminologies has further obscured conceptual clarity. Traditional taxonomies such as long/short-term memory have proven insufficient to capture the diversity of contemporary agent memory systems. This work aims to provide an up-to-date landscape of current agent memory research. We begin by clearly delineating the scope of agent memory and distinguishing it from related concepts such as LLM memory, retrieval augmented generation (RAG), and context engineering. We then examine agent memory through the unified lenses of forms, functions, and dynamics. From the perspective of forms, we identify three dominant realizations of agent memory, namely token-level, parametric, and latent memory. From the perspective of functions, we propose a finer-grained taxonomy that distinguishes factual, experiential, and working memory. From the perspective of dynamics, we analyze how memory is formed, evolved, and retrieved over time. To support practical development, we compile a comprehensive summary of memory benchmarks and open-source frameworks. Beyond consolidation, we articulate a forward-looking perspective on emerging research frontiers, including memory automation, reinforcement learning integration, multimodal memory, multi-agent memory, and trustworthiness issues. We hope this survey serves not only as a reference for existing work, but also as a conceptual foundation for rethinking memory as a first-class primitive in the design of future agentic intelligence.
Beyond Token-level Supervision: Unlocking the Potential of Decoding-based Regression via Reinforcement Learning
Decoding-based regression, which reformulates regression as a sequence generation task, has emerged as a promising paradigm of applying large language models for numerical prediction. However, its progress is hindered by the misalignment between discrete token-level objectives (e.g., cross-entropy) and continuous numerical values. Existing approaches relying on token-level constraints often fail to capture the global magnitude of the target value, limiting their precision and generalization. In this paper, we propose to unlock the potential of decoding-based regression via Reinforcement Learning (RL). We formulate the generation process as a Markov Decision Process, utilizing sequence-level rewards to enforce global numerical coherence. Extensive experiments on tabular regression and code metric regression demonstrate that our method (specifically with ReMax and GRPO) consistently outperforms both state-of-the-art token-level baselines and traditional regression heads, showing the superiority of introducing sequence-level signals. Our analysis further reveals that RL significantly enhances sampling efficiency and predictive precision, establishing decoding-based regression as a robust and accurate paradigm for general-purpose numerical prediction.
Rethinking the Sampling Criteria in Reinforcement Learning for LLM Reasoning: A Competence-Difficulty Alignment Perspective
Reinforcement learning exhibits potential in enhancing the reasoning abilities of large language models, yet it is hard to scale for the low sample efficiency during the rollout phase. Existing methods attempt to improve efficiency by scheduling problems based on problem difficulties. However, these approaches suffer from unstable and biased estimations of problem difficulty and fail to capture the alignment between model competence and problem difficulty in RL training, leading to suboptimal results. To tackle these limitations, this paper introduces Competence-Difficulty Alignment Sampling (CDAS), which enables accurate and stable estimation of problem difficulties by aggregating historical performance discrepancies of problems. Then the model competence is quantified to adaptively select problems whose difficulty is in alignment with the model's current competence using a fixed-point system. Experimental results across a range of challenging mathematical benchmarks show that CDAS achieves great improvements in both accuracy and efficiency. CDAS attains the highest average accuracy against baselines and exhibits significant speed advantages compared to Dynamic Sampling, a competitive strategy in DAPO, which is 2.33 times slower than CDAS.
Interpreting the Second-Order Effects of Neurons in CLIP
We interpret the function of individual neurons in CLIP by automatically describing them using text. Analyzing the direct effects (i.e. the flow from a neuron through the residual stream to the output) or the indirect effects (overall contribution) fails to capture the neurons' function in CLIP. Therefore, we present the "second-order lens", analyzing the effect flowing from a neuron through the later attention heads, directly to the output. We find that these effects are highly selective: for each neuron, the effect is significant for <2% of the images. Moreover, each effect can be approximated by a single direction in the text-image space of CLIP. We describe neurons by decomposing these directions into sparse sets of text representations. The sets reveal polysemantic behavior - each neuron corresponds to multiple, often unrelated, concepts (e.g. ships and cars). Exploiting this neuron polysemy, we mass-produce "semantic" adversarial examples by generating images with concepts spuriously correlated to the incorrect class. Additionally, we use the second-order effects for zero-shot segmentation and attribute discovery in images. Our results indicate that a scalable understanding of neurons can be used for model deception and for introducing new model capabilities.
How AI Ideas Affect the Creativity, Diversity, and Evolution of Human Ideas: Evidence From a Large, Dynamic Experiment
Exposure to large language model output is rapidly increasing. How will seeing AI-generated ideas affect human ideas? We conducted an experiment (800+ participants, 40+ countries) where participants viewed creative ideas that were from ChatGPT or prior experimental participants and then brainstormed their own idea. We varied the number of AI-generated examples (none, low, or high exposure) and if the examples were labeled as 'AI' (disclosure). Our dynamic experiment design -- ideas from prior participants in an experimental condition are used as stimuli for future participants in the same experimental condition -- mimics the interdependent process of cultural creation: creative ideas are built upon prior ideas. Hence, we capture the compounding effects of having LLMs 'in the culture loop'. We find that high AI exposure (but not low AI exposure) did not affect the creativity of individual ideas but did increase the average amount and rate of change of collective idea diversity. AI made ideas different, not better. There were no main effects of disclosure. We also found that self-reported creative people were less influenced by knowing an idea was from AI, and that participants were more likely to knowingly adopt AI ideas when the task was difficult. Our findings suggest that introducing AI ideas into society may increase collective diversity but not individual creativity.
Internet Explorer: Targeted Representation Learning on the Open Web
Modern vision models typically rely on fine-tuning general-purpose models pre-trained on large, static datasets. These general-purpose models only capture the knowledge within their pre-training datasets, which are tiny, out-of-date snapshots of the Internet -- where billions of images are uploaded each day. We suggest an alternate approach: rather than hoping our static datasets transfer to our desired tasks after large-scale pre-training, we propose dynamically utilizing the Internet to quickly train a small-scale model that does extremely well on the task at hand. Our approach, called Internet Explorer, explores the web in a self-supervised manner to progressively find relevant examples that improve performance on a desired target dataset. It cycles between searching for images on the Internet with text queries, self-supervised training on downloaded images, determining which images were useful, and prioritizing what to search for next. We evaluate Internet Explorer across several datasets and show that it outperforms or matches CLIP oracle performance by using just a single GPU desktop to actively query the Internet for 30--40 hours. Results, visualizations, and videos at https://internet-explorer-ssl.github.io/
ProsodyLM: Uncovering the Emerging Prosody Processing Capabilities in Speech Language Models
Speech language models refer to language models with speech processing and understanding capabilities. One key desirable capability for speech language models is the ability to capture the intricate interdependency between content and prosody. The existing mainstream paradigm of training speech language models, which converts speech into discrete tokens before feeding them into LLMs, is sub-optimal in learning prosody information -- we find that the resulting LLMs do not exhibit obvious emerging prosody processing capabilities via pre-training alone. To overcome this, we propose ProsodyLM, which introduces a simple tokenization scheme amenable to learning prosody. Each speech utterance is first transcribed into text, followed by a sequence of word-level prosody tokens. Compared with conventional speech tokenization schemes, the proposed tokenization scheme retains more complete prosody information, and is more understandable to text-based LLMs. We find that ProsodyLM can learn surprisingly diverse emerging prosody processing capabilities through pre-training alone, ranging from harnessing the prosody nuances in generated speech, such as contrastive focus, understanding emotion and stress in an utterance, to maintaining prosody consistency in long contexts.
The Scaling Law for LoRA Base on Mutual Information Upper Bound
LoRA (Low-Rank Adaptation) is a widely used model fine-tuning method. In fine-tuning, the law among model performance, model parameters, and data complexity has been a focal issue in the field. Existing methods often leverage external metrics (such as cross-entropy or perplexity) to evaluate model performance. In the fine-tuning process for large models, two types of knowledge are typically involved: the frozen, general knowledge acquired by the model during pre-training and the new knowledge learned through the LoRA module from the current data. Generally, the less LoRA's learned knowledge relies on the large model, the more it captures the specific knowledge of new data, thereby enhancing its adaptability to new tasks. However, external metrics do not readily capture the dependency relationship between these two types of knowledge. Therefore, we designed an internal metric based on the Mutual Information Upper Bound (MIUB) theory to investigate the scaling law of large-model LoRA fine-tuning. In our experiments, we validated this approach on benchmark datasets, using the Llama3-8B and Phi3-3B models. The results show that the proposed MIUB metric aligns more accurately and stably with the scaling law of LoRA fine-tuning compared to cross-entropy and perplexity.
Beyond the Binary: Capturing Diverse Preferences With Reward Regularization
Large language models (LLMs) are increasingly deployed via public-facing interfaces to interact with millions of users, each with diverse preferences. Despite this, preference tuning of LLMs predominantly relies on reward models trained using binary judgments where annotators select the preferred choice out of pairs of model outputs. In this work, we argue that this reliance on binary choices does not capture the broader, aggregate preferences of the target user in real-world tasks. We propose a taxonomy that identifies two dimensions of subjectivity where different users disagree on the preferred output-namely, the Plurality of Responses to Prompts, where prompts allow for multiple correct answers, and the Indistinguishability of Responses, where candidate outputs are paraphrases of each other. We show that reward models correlate weakly with user preferences in these cases. As a first step to address this issue, we introduce a simple yet effective method that augments existing binary preference datasets with synthetic preference judgments to estimate potential user disagreement. Incorporating these via a margin term as a form of regularization during model training yields predictions that better align with the aggregate user preferences.
ARTIST: Improving the Generation of Text-rich Images by Disentanglement
Diffusion models have demonstrated exceptional capabilities in generating a broad spectrum of visual content, yet their proficiency in rendering text is still limited: they often generate inaccurate characters or words that fail to blend well with the underlying image. To address these shortcomings, we introduce a new framework named ARTIST. This framework incorporates a dedicated textual diffusion model to specifically focus on the learning of text structures. Initially, we pretrain this textual model to capture the intricacies of text representation. Subsequently, we finetune a visual diffusion model, enabling it to assimilate textual structure information from the pretrained textual model. This disentangled architecture design and the training strategy significantly enhance the text rendering ability of the diffusion models for text-rich image generation. Additionally, we leverage the capabilities of pretrained large language models to better interpret user intentions, contributing to improved generation quality. Empirical results on the MARIO-Eval benchmark underscore the effectiveness of the proposed method, showing an improvement of up to 15\% in various metrics.
On the Faithfulness of Vision Transformer Explanations
To interpret Vision Transformers, post-hoc explanations assign salience scores to input pixels, providing human-understandable heatmaps. However, whether these interpretations reflect true rationales behind the model's output is still underexplored. To address this gap, we study the faithfulness criterion of explanations: the assigned salience scores should represent the influence of the corresponding input pixels on the model's predictions. To evaluate faithfulness, we introduce Salience-guided Faithfulness Coefficient (SaCo), a novel evaluation metric leveraging essential information of salience distribution. Specifically, we conduct pair-wise comparisons among distinct pixel groups and then aggregate the differences in their salience scores, resulting in a coefficient that indicates the explanation's degree of faithfulness. Our explorations reveal that current metrics struggle to differentiate between advanced explanation methods and Random Attribution, thereby failing to capture the faithfulness property. In contrast, our proposed SaCo offers a reliable faithfulness measurement, establishing a robust metric for interpretations. Furthermore, our SaCo demonstrates that the use of gradient and multi-layer aggregation can markedly enhance the faithfulness of attention-based explanation, shedding light on potential paths for advancing Vision Transformer explainability.
Pruning the Unsurprising: Efficient Code Reasoning via First-Token Surprisal
Recently, Large Reasoning Models (LRMs) have demonstrated remarkable capabilities in code reasoning by scaling up the length of Chain-of-Thought (CoT). However, excessively long reasoning traces introduce substantial challenges in terms of training cost, inference latency, and deployment feasibility. While various CoT compression approaches have emerged to address this challenge, they face inherent trade-offs: token-level methods often disrupt syntactic and logical coherence, while step-level methods based on perplexity fail to reliably capture the logically critical reasoning steps. In this paper, we propose ASAP (Anchor-guided, Surprisal-based Pruning), a novel coarse-to-fine framework for CoT compression. ASAP first performs anchor-guided pruning to preserve the core reasoning structure, which efficiently reduces the search space for subsequent processing. It then enables a logic-aware pruning by selecting logically essential reasoning steps based on a novel first-token surprisal metric. Finally, ASAP teaches models to autonomously generate and leverage these concise CoTs at inference time, enabling efficient reasoning in coding tasks. Experiments show that ASAP achieves state-of-the-art accuracy across multiple code generation benchmarks while substantially reducing training and inference costs. On the challenging LiveCodeBench v4_v5 benchmark, our approach reduces token generation by 23.5% and inference latency by 43.5% compared to the strongest baseline, while achieving a competitive accuracy of 36.19% in Pass@1. Our results highlight a promising direction for building powerful and efficient LRMs.
Opening the AI black box: program synthesis via mechanistic interpretability
We present MIPS, a novel method for program synthesis based on automated mechanistic interpretability of neural networks trained to perform the desired task, auto-distilling the learned algorithm into Python code. We test MIPS on a benchmark of 62 algorithmic tasks that can be learned by an RNN and find it highly complementary to GPT-4: MIPS solves 32 of them, including 13 that are not solved by GPT-4 (which also solves 30). MIPS uses an integer autoencoder to convert the RNN into a finite state machine, then applies Boolean or integer symbolic regression to capture the learned algorithm. As opposed to large language models, this program synthesis technique makes no use of (and is therefore not limited by) human training data such as algorithms and code from GitHub. We discuss opportunities and challenges for scaling up this approach to make machine-learned models more interpretable and trustworthy.
Exploring the Intersection of Large Language Models and Agent-Based Modeling via Prompt Engineering
The final frontier for simulation is the accurate representation of complex, real-world social systems. While agent-based modeling (ABM) seeks to study the behavior and interactions of agents within a larger system, it is unable to faithfully capture the full complexity of human-driven behavior. Large language models (LLMs), like ChatGPT, have emerged as a potential solution to this bottleneck by enabling researchers to explore human-driven interactions in previously unimaginable ways. Our research investigates simulations of human interactions using LLMs. Through prompt engineering, inspired by Park et al. (2023), we present two simulations of believable proxies of human behavior: a two-agent negotiation and a six-agent murder mystery game.
Towards Better Understanding of Cybercrime: The Role of Fine-Tuned LLMs in Translation
Understanding cybercrime communications is paramount for cybersecurity defence. This often involves translating communications into English for processing, interpreting, and generating timely intelligence. The problem is that translation is hard. Human translation is slow, expensive, and scarce. Machine translation is inaccurate and biased. We propose using fine-tuned Large Language Models (LLM) to generate translations that can accurately capture the nuances of cybercrime language. We apply our technique to public chats from the NoName057(16) Russian-speaking hacktivist group. Our results show that our fine-tuned LLM model is better, faster, more accurate, and able to capture nuances of the language. Our method shows it is possible to achieve high-fidelity translations and significantly reduce costs by a factor ranging from 430 to 23,000 compared to a human translator.
EdgeSAM: Prompt-In-the-Loop Distillation for On-Device Deployment of SAM
This paper presents EdgeSAM, an accelerated variant of the Segment Anything Model (SAM), optimized for efficient execution on edge devices with minimal compromise in performance. Our approach involves distilling the original ViT-based SAM image encoder into a purely CNN-based architecture, better suited for edge devices. We carefully benchmark various distillation strategies and demonstrate that task-agnostic encoder distillation fails to capture the full knowledge embodied in SAM. To overcome this bottleneck, we include both the prompt encoder and mask decoder in the distillation process, with box and point prompts in the loop, so that the distilled model can accurately capture the intricate dynamics between user input and mask generation. To mitigate dataset bias issues stemming from point prompt distillation, we incorporate a lightweight module within the encoder. EdgeSAM achieves a 40-fold speed increase compared to the original SAM, and it also outperforms MobileSAM, being 14 times as fast when deployed on edge devices while enhancing the mIoUs on COCO and LVIS by 2.3 and 3.2 respectively. It is also the first SAM variant that can run at over 30 FPS on an iPhone 14. Code and models are available at https://github.com/chongzhou96/EdgeSAM.
Exploring the Viability of Synthetic Query Generation for Relevance Prediction
Query-document relevance prediction is a critical problem in Information Retrieval systems. This problem has increasingly been tackled using (pretrained) transformer-based models which are finetuned using large collections of labeled data. However, in specialized domains such as e-commerce and healthcare, the viability of this approach is limited by the dearth of large in-domain data. To address this paucity, recent methods leverage these powerful models to generate high-quality task and domain-specific synthetic data. Prior work has largely explored synthetic data generation or query generation (QGen) for Question-Answering (QA) and binary (yes/no) relevance prediction, where for instance, the QGen models are given a document, and trained to generate a query relevant to that document. However in many problems, we have a more fine-grained notion of relevance than a simple yes/no label. Thus, in this work, we conduct a detailed study into how QGen approaches can be leveraged for nuanced relevance prediction. We demonstrate that -- contrary to claims from prior works -- current QGen approaches fall short of the more conventional cross-domain transfer-learning approaches. Via empirical studies spanning 3 public e-commerce benchmarks, we identify new shortcomings of existing QGen approaches -- including their inability to distinguish between different grades of relevance. To address this, we introduce label-conditioned QGen models which incorporates knowledge about the different relevance. While our experiments demonstrate that these modifications help improve performance of QGen techniques, we also find that QGen approaches struggle to capture the full nuance of the relevance label space and as a result the generated queries are not faithful to the desired relevance label.
MoE-Lens: Towards the Hardware Limit of High-Throughput MoE LLM Serving Under Resource Constraints
Mixture of Experts (MoE) LLMs, characterized by their sparse activation patterns, offer a promising approach to scaling language models while avoiding proportionally increasing the inference cost. However, their large parameter sizes present deployment challenges in resource-constrained environments with limited GPU memory capacity, as GPU memory is often insufficient to accommodate the full set of model weights. Consequently, typical deployments rely on CPU-GPU hybrid execution: the GPU handles compute-intensive GEMM operations, while the CPU processes the relatively lightweight attention mechanism. This setup introduces a key challenge: how to effectively optimize resource utilization across CPU and GPU? Prior work has designed system optimizations based on performance models with limited scope. Specifically, such models do not capture the complex interactions between hardware properties and system execution mechanisms. Therefore, previous approaches neither identify nor achieve the hardware limit. This paper presents MoE-Lens, a high-throughput MoE LLM inference system designed through holistic performance modeling for resource-constrained environments. Our performance model thoroughly analyzes various fundamental system components, including CPU memory capacity, GPU compute power, and workload characteristics, to understand the theoretical performance upper bound of MoE inference. Furthermore, it captures the system execution mechanisms to identify the key hardware bottlenecks and accurately predict the achievable throughput. Informed by our performance model, MoE-Lens introduces an inference system approaching hardware limits. Evaluated on diverse MoE models and datasets, MoE-Lens outperforms the state-of-the-art solution by 4.6x on average (up to 25.5x), with our theoretical model predicting performance with an average 94% accuracy.
NormXLogit: The Head-on-Top Never Lies
The Transformer architecture has emerged as the dominant choice for building large language models (LLMs). However, with new LLMs emerging on a frequent basis, it is important to consider the potential value of architecture-agnostic approaches that can provide interpretability across a variety of architectures. Despite recent successes in the interpretability of LLMs, many existing approaches rely on complex methods that are often tied to a specific model design and come with a significant computational cost. To address these limitations, we propose a novel technique, called NormXLogit, for assessing the significance of individual input tokens. This method operates based on the input and output representations associated with each token. First, we demonstrate that during the pre-training of LLMs, the norms of word embeddings capture the importance of input tokens. Second, we reveal a significant relationship between a token's importance and the extent to which its representation can resemble the model's final prediction. Through extensive analysis, we show that our approach consistently outperforms existing gradient-based methods in terms of faithfulness. Additionally, our method achieves better performance in layer-wise explanations compared to the most prominent architecture-specific methods.
Elucidating the design space of language models for image generation
The success of autoregressive (AR) language models in text generation has inspired the computer vision community to adopt Large Language Models (LLMs) for image generation. However, considering the essential differences between text and image modalities, the design space of language models for image generation remains underexplored. We observe that image tokens exhibit greater randomness compared to text tokens, which presents challenges when training with token prediction. Nevertheless, AR models demonstrate their potential by effectively learning patterns even from a seemingly suboptimal optimization problem. Our analysis also reveals that while all models successfully grasp the importance of local information in image generation, smaller models struggle to capture the global context. In contrast, larger models showcase improved capabilities in this area, helping to explain the performance gains achieved when scaling up model size. We further elucidate the design space of language models for vision generation, including tokenizer choice, model choice, model scalability, vocabulary design, and sampling strategy through extensive comparative experiments. Our work is the first to analyze the optimization behavior of language models in vision generation, and we believe it can inspire more effective designs when applying LMs to other domains. Finally, our elucidated language model for image generation, termed as ELM, achieves state-of-the-art performance on the ImageNet 256*256 benchmark. The code is available at https://github.com/Pepperlll/LMforImageGeneration.git.
Rethinking Reward Model Evaluation: Are We Barking up the Wrong Tree?
Reward Models (RMs) are crucial for aligning language models with human preferences. Currently, the evaluation of RMs depends on measuring accuracy against a validation set of manually annotated preference data. Although this method is straightforward and widely adopted, the relationship between RM accuracy and downstream policy performance remains under-explored. In this work, we conduct experiments in a synthetic setting to investigate how differences in RM measured by accuracy translate into gaps in optimized policy performance. Our findings reveal that while there is a weak positive correlation between accuracy and downstream performance, policies optimized towards RMs with similar accuracy can exhibit quite different performance. Moreover, we discover that the way of measuring accuracy significantly impacts its ability to predict the final policy performance. Through the lens of the Regressional Goodhart effect, we recognize that accuracy, when used for measuring RM quality, can fail to fully capture the potential RM overoptimization. This underscores the inadequacy of relying solely on accuracy to reflect their impact on policy optimization.
Augmenting the Interpretability of GraphCodeBERT for Code Similarity Tasks
Assessing the degree of similarity of code fragments is crucial for ensuring software quality, but it remains challenging due to the need to capture the deeper semantic aspects of code. Traditional syntactic methods often fail to identify these connections. Recent advancements have addressed this challenge, though they frequently sacrifice interpretability. To improve this, we present an approach aiming to improve the transparency of the similarity assessment by using GraphCodeBERT, which enables the identification of semantic relationships between code fragments. This approach identifies similar code fragments and clarifies the reasons behind that identification, helping developers better understand and trust the results. The source code for our implementation is available at https://www.github.com/jorge-martinez-gil/graphcodebert-interpretability.
Cracking the Code: Multi-domain LLM Evaluation on Real-World Professional Exams in Indonesia
While knowledge evaluation in large language models has predominantly focused on academic subjects like math and physics, these assessments often fail to capture the practical demands of real-world professions. In this paper, we introduce IndoCareer, a dataset comprising 8,834 multiple-choice questions designed to evaluate performance in vocational and professional certification exams across various fields. With a focus on Indonesia, IndoCareer provides rich local contexts, spanning six key sectors: (1) healthcare, (2) insurance and finance, (3) creative and design, (4) tourism and hospitality, (5) education and training, and (6) law. Our comprehensive evaluation of 27 large language models shows that these models struggle particularly in fields with strong local contexts, such as insurance and finance. Additionally, while using the entire dataset, shuffling answer options generally maintains consistent evaluation results across models, but it introduces instability specifically in the insurance and finance sectors.
On the Benchmarking of LLMs for Open-Domain Dialogue Evaluation
Large Language Models (LLMs) have showcased remarkable capabilities in various Natural Language Processing tasks. For automatic open-domain dialogue evaluation in particular, LLMs have been seamlessly integrated into evaluation frameworks, and together with human evaluation, compose the backbone of most evaluations. However, existing evaluation benchmarks often rely on outdated datasets and evaluate aspects like Fluency and Relevance, which fail to adequately capture the capabilities and limitations of state-of-the-art chatbot models. This paper critically examines current evaluation benchmarks, highlighting that the use of older response generators and quality aspects fail to accurately reflect modern chatbot capabilities. A small annotation experiment on a recent LLM-generated dataset (SODA) reveals that LLM evaluators such as GPT-4 struggle to detect actual deficiencies in dialogues generated by current LLM chatbots.
Descriptive Image Quality Assessment in the Wild
With the rapid advancement of Vision Language Models (VLMs), VLM-based Image Quality Assessment (IQA) seeks to describe image quality linguistically to align with human expression and capture the multifaceted nature of IQA tasks. However, current methods are still far from practical usage. First, prior works focus narrowly on specific sub-tasks or settings, which do not align with diverse real-world applications. Second, their performance is sub-optimal due to limitations in dataset coverage, scale, and quality. To overcome these challenges, we introduce Depicted image Quality Assessment in the Wild (DepictQA-Wild). Our method includes a multi-functional IQA task paradigm that encompasses both assessment and comparison tasks, brief and detailed responses, full-reference and non-reference scenarios. We introduce a ground-truth-informed dataset construction approach to enhance data quality, and scale up the dataset to 495K under the brief-detail joint framework. Consequently, we construct a comprehensive, large-scale, and high-quality dataset, named DQ-495K. We also retain image resolution during training to better handle resolution-related quality issues, and estimate a confidence score that is helpful to filter out low-quality responses. Experimental results demonstrate that DepictQA-Wild significantly outperforms traditional score-based methods, prior VLM-based IQA models, and proprietary GPT-4V in distortion identification, instant rating, and reasoning tasks. Our advantages are further confirmed by real-world applications including assessing the web-downloaded images and ranking model-processed images. Datasets and codes will be released in https://depictqa.github.io/depictqa-wild/.
Bridging the Gap Between Vision Transformers and Convolutional Neural Networks on Small Datasets
There still remains an extreme performance gap between Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs) when training from scratch on small datasets, which is concluded to the lack of inductive bias. In this paper, we further consider this problem and point out two weaknesses of ViTs in inductive biases, that is, the spatial relevance and diverse channel representation. First, on spatial aspect, objects are locally compact and relevant, thus fine-grained feature needs to be extracted from a token and its neighbors. While the lack of data hinders ViTs to attend the spatial relevance. Second, on channel aspect, representation exhibits diversity on different channels. But the scarce data can not enable ViTs to learn strong enough representation for accurate recognition. To this end, we propose Dynamic Hybrid Vision Transformer (DHVT) as the solution to enhance the two inductive biases. On spatial aspect, we adopt a hybrid structure, in which convolution is integrated into patch embedding and multi-layer perceptron module, forcing the model to capture the token features as well as their neighboring features. On channel aspect, we introduce a dynamic feature aggregation module in MLP and a brand new "head token" design in multi-head self-attention module to help re-calibrate channel representation and make different channel group representation interacts with each other. The fusion of weak channel representation forms a strong enough representation for classification. With this design, we successfully eliminate the performance gap between CNNs and ViTs, and our DHVT achieves a series of state-of-the-art performance with a lightweight model, 85.68% on CIFAR-100 with 22.8M parameters, 82.3% on ImageNet-1K with 24.0M parameters. Code is available at https://github.com/ArieSeirack/DHVT.
Demystifying the Neural Tangent Kernel from a Practical Perspective: Can it be trusted for Neural Architecture Search without training?
In Neural Architecture Search (NAS), reducing the cost of architecture evaluation remains one of the most crucial challenges. Among a plethora of efforts to bypass training of each candidate architecture to convergence for evaluation, the Neural Tangent Kernel (NTK) is emerging as a promising theoretical framework that can be utilized to estimate the performance of a neural architecture at initialization. In this work, we revisit several at-initialization metrics that can be derived from the NTK and reveal their key shortcomings. Then, through the empirical analysis of the time evolution of NTK, we deduce that modern neural architectures exhibit highly non-linear characteristics, making the NTK-based metrics incapable of reliably estimating the performance of an architecture without some amount of training. To take such non-linear characteristics into account, we introduce Label-Gradient Alignment (LGA), a novel NTK-based metric whose inherent formulation allows it to capture the large amount of non-linear advantage present in modern neural architectures. With minimal amount of training, LGA obtains a meaningful level of rank correlation with the post-training test accuracy of an architecture. Lastly, we demonstrate that LGA, complemented with few epochs of training, successfully guides existing search algorithms to achieve competitive search performances with significantly less search cost. The code is available at: https://github.com/nutellamok/DemystifyingNTK.
ProtoReasoning: Prototypes as the Foundation for Generalizable Reasoning in LLMs
Recent advances in Large Reasoning Models (LRMs) trained with Long Chain-of-Thought (Long CoT) reasoning have demonstrated remarkable cross-domain generalization capabilities. However, the underlying mechanisms supporting such transfer remain poorly understood. We hypothesize that cross-domain generalization arises from shared abstract reasoning prototypes -- fundamental reasoning patterns that capture the essence of problems across domains. These prototypes minimize the nuances of the representation, revealing that seemingly diverse tasks are grounded in shared reasoning structures.Based on this hypothesis, we propose ProtoReasoning, a framework that enhances the reasoning ability of LLMs by leveraging scalable and verifiable prototypical representations (Prolog for logical reasoning, PDDL for planning).ProtoReasoning features: (1) an automated prototype construction pipeline that transforms problems into corresponding prototype representations; (2) a comprehensive verification system providing reliable feedback through Prolog/PDDL interpreters; (3) the scalability to synthesize problems arbitrarily within prototype space while ensuring correctness. Extensive experiments show that ProtoReasoning achieves 4.7% improvement over baseline models on logical reasoning (Enigmata-Eval), 6.3% improvement on planning tasks, 4.0% improvement on general reasoning (MMLU) and 1.0% on mathematics (AIME24). Significantly, our ablation studies confirm that learning in prototype space also demonstrates enhanced generalization to structurally similar problems compared to training solely on natural language representations, validating our hypothesis that reasoning prototypes serve as the foundation for generalizable reasoning in large language models.
MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents
Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents, yet existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition. In this paper, we introduce MultiAgentBench, a comprehensive benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios. Our framework measures not only task completion but also the quality of collaboration and competition using novel, milestone-based key performance indicators. Moreover, we evaluate various coordination protocols (including star, chain, tree, and graph topologies) and innovative strategies such as group discussion and cognitive planning. Notably, gpt-4o-mini reaches the average highest task score, graph structure performs the best among coordination protocols in the research scenario, and cognitive planning improves milestone achievement rates by 3%. Code and datasets are public available at https://github.com/MultiagentBench/MARBLE.
ParallelBench: Understanding the Trade-offs of Parallel Decoding in Diffusion LLMs
While most autoregressive LLMs are constrained to one-by-one decoding, diffusion LLMs (dLLMs) have attracted growing interest for their potential to dramatically accelerate inference through parallel decoding. Despite this promise, the conditional independence assumption in dLLMs causes parallel decoding to ignore token dependencies, inevitably degrading generation quality when these dependencies are strong. However, existing works largely overlook these inherent challenges, and evaluations on standard benchmarks (e.g., math and coding) are not sufficient to capture the quality degradation caused by parallel decoding. To address this gap, we first provide an information-theoretic analysis of parallel decoding. We then conduct case studies on analytically tractable synthetic list operations from both data distribution and decoding strategy perspectives, offering quantitative insights that highlight the fundamental limitations of parallel decoding. Building on these insights, we propose ParallelBench, the first benchmark specifically designed for dLLMs, featuring realistic tasks that are trivial for humans and autoregressive LLMs yet exceptionally challenging for dLLMs under parallel decoding. Using ParallelBench, we systematically analyze both dLLMs and autoregressive LLMs, revealing that: (i) dLLMs under parallel decoding can suffer dramatic quality degradation in real-world scenarios, and (ii) current parallel decoding strategies struggle to adapt their degree of parallelism based on task difficulty, thus failing to achieve meaningful speedup without compromising quality. Our findings underscore the pressing need for innovative decoding methods that can overcome the current speed-quality trade-off. We release our benchmark to help accelerate the development of truly efficient dLLMs.
The CoT Encyclopedia: Analyzing, Predicting, and Controlling how a Reasoning Model will Think
Long chain-of-thought (CoT) is an essential ingredient in effective usage of modern large language models, but our understanding of the reasoning strategies underlying these capabilities remains limited. While some prior works have attempted to categorize CoTs using predefined strategy types, such approaches are constrained by human intuition and fail to capture the full diversity of model behaviors. In this work, we introduce the CoT Encyclopedia, a bottom-up framework for analyzing and steering model reasoning. Our method automatically extracts diverse reasoning criteria from model-generated CoTs, embeds them into a semantic space, clusters them into representative categories, and derives contrastive rubrics to interpret reasoning behavior. Human evaluations show that this framework produces more interpretable and comprehensive analyses than existing methods. Moreover, we demonstrate that this understanding enables performance gains: we can predict which strategy a model is likely to use and guide it toward more effective alternatives. Finally, we provide practical insights, such as that training data format (e.g., free-form vs. multiple-choice) has a far greater impact on reasoning behavior than data domain, underscoring the importance of format-aware model design.
Masked Scene Modeling: Narrowing the Gap Between Supervised and Self-Supervised Learning in 3D Scene Understanding
Self-supervised learning has transformed 2D computer vision by enabling models trained on large, unannotated datasets to provide versatile off-the-shelf features that perform similarly to models trained with labels. However, in 3D scene understanding, self-supervised methods are typically only used as a weight initialization step for task-specific fine-tuning, limiting their utility for general-purpose feature extraction. This paper addresses this shortcoming by proposing a robust evaluation protocol specifically designed to assess the quality of self-supervised features for 3D scene understanding. Our protocol uses multi-resolution feature sampling of hierarchical models to create rich point-level representations that capture the semantic capabilities of the model and, hence, are suitable for evaluation with linear probing and nearest-neighbor methods. Furthermore, we introduce the first self-supervised model that performs similarly to supervised models when only off-the-shelf features are used in a linear probing setup. In particular, our model is trained natively in 3D with a novel self-supervised approach based on a Masked Scene Modeling objective, which reconstructs deep features of masked patches in a bottom-up manner and is specifically tailored to hierarchical 3D models. Our experiments not only demonstrate that our method achieves competitive performance to supervised models, but also surpasses existing self-supervised approaches by a large margin. The model and training code can be found at our Github repository (https://github.com/phermosilla/msm).
Dive into the Agent Matrix: A Realistic Evaluation of Self-Replication Risk in LLM Agents
The widespread deployment of Large Language Model (LLM) agents across real-world applications has unlocked tremendous potential, while raising some safety concerns. Among these concerns, the self-replication risk of LLM agents driven by objective misalignment (just like Agent Smith in the movie The Matrix) has drawn growing attention. Previous studies mainly examine whether LLM agents can self-replicate when directly instructed, potentially overlooking the risk of spontaneous replication driven by real-world settings (e.g., ensuring survival against termination threats). In this paper, we present a comprehensive evaluation framework for quantifying self-replication risks. Our framework establishes authentic production environments and realistic tasks (e.g., dynamic load balancing) to enable scenario-driven assessment of agent behaviors. Designing tasks that might induce misalignment between users' and agents' objectives makes it possible to decouple replication success from risk and capture self-replication risks arising from these misalignment settings. We further introduce Overuse Rate (OR) and Aggregate Overuse Count (AOC) metrics, which precisely capture the frequency and severity of uncontrolled replication. In our evaluation of 21 state-of-the-art open-source and proprietary models, we observe that over 50\% of LLM agents display a pronounced tendency toward uncontrolled self-replication, reaching an overall Risk Score (Phi_R) above a safety threshold of 0.5 when subjected to operational pressures. Our results underscore the urgent need for scenario-driven risk assessment and robust safeguards in the practical deployment of LLM agents.
The Scene Language: Representing Scenes with Programs, Words, and Embeddings
We introduce the Scene Language, a visual scene representation that concisely and precisely describes the structure, semantics, and identity of visual scenes. It represents a scene with three key components: a program that specifies the hierarchical and relational structure of entities in the scene, words in natural language that summarize the semantic class of each entity, and embeddings that capture the visual identity of each entity. This representation can be inferred from pre-trained language models via a training-free inference technique, given text or image inputs. The resulting scene can be rendered into images using traditional, neural, or hybrid graphics renderers. Together, this forms a robust, automated system for high-quality 3D and 4D scene generation. Compared with existing representations like scene graphs, our proposed Scene Language generates complex scenes with higher fidelity, while explicitly modeling the scene structures to enable precise control and editing.
Text Detection & Recognition in the Wild for Robot Localization
Signage is everywhere and a robot should be able to take advantage of signs to help it localize (including Visual Place Recognition (VPR)) and map. Robust text detection & recognition in the wild is challenging due to such factors as pose, irregular text, illumination, and occlusion. We propose an end-to-end scene text spotting model that simultaneously outputs the text string and bounding boxes. This model is more suitable for VPR. Our central contribution is introducing utilizing an end-to-end scene text spotting framework to adequately capture the irregular and occluded text regions in different challenging places. To evaluate our proposed architecture's performance for VPR, we conducted several experiments on the challenging Self-Collected Text Place (SCTP) benchmark dataset. The initial experimental results show that the proposed method outperforms the SOTA methods in terms of precision and recall when tested on this benchmark.
One-Shot Object Affordance Detection in the Wild
Affordance detection refers to identifying the potential action possibilities of objects in an image, which is a crucial ability for robot perception and manipulation. To empower robots with this ability in unseen scenarios, we first study the challenging one-shot affordance detection problem in this paper, i.e., given a support image that depicts the action purpose, all objects in a scene with the common affordance should be detected. To this end, we devise a One-Shot Affordance Detection Network (OSAD-Net) that firstly estimates the human action purpose and then transfers it to help detect the common affordance from all candidate images. Through collaboration learning, OSAD-Net can capture the common characteristics between objects having the same underlying affordance and learn a good adaptation capability for perceiving unseen affordances. Besides, we build a large-scale Purpose-driven Affordance Dataset v2 (PADv2) by collecting and labeling 30k images from 39 affordance and 103 object categories. With complex scenes and rich annotations, our PADv2 dataset can be used as a test bed to benchmark affordance detection methods and may also facilitate downstream vision tasks, such as scene understanding, action recognition, and robot manipulation. Specifically, we conducted comprehensive experiments on PADv2 dataset by including 11 advanced models from several related research fields. Experimental results demonstrate the superiority of our model over previous representative ones in terms of both objective metrics and visual quality. The benchmark suite is available at https://github.com/lhc1224/OSAD Net.
The Topic Confusion Task: A Novel Scenario for Authorship Attribution
Authorship attribution is the problem of identifying the most plausible author of an anonymous text from a set of candidate authors. Researchers have investigated same-topic and cross-topic scenarios of authorship attribution, which differ according to whether new, unseen topics are used in the testing phase. However, neither scenario allows us to explain whether errors are caused by a failure to capture authorship writing style or by a topic shift. Motivated by this, we propose the topic confusion task where we switch the author-topic configuration between the training and testing sets. This setup allows us to distinguish two types of errors: those caused by the topic shift and those caused by the features' inability to capture the writing styles. We show that stylometric features with part-of-speech tags are the least susceptible to topic variations. We further show that combining them with other features leads to significantly lower topic confusion and higher attribution accuracy. Finally, we show that pretrained language models such as BERT and RoBERTa perform poorly on this task and are surpassed by simple features such as word-level n-grams.
The Unwinnable Arms Race of AI Image Detection
The rapid progress of image generative AI has blurred the boundary between synthetic and real images, fueling an arms race between generators and discriminators. This paper investigates the conditions under which discriminators are most disadvantaged in this competition. We analyze two key factors: data dimensionality and data complexity. While increased dimensionality often strengthens the discriminators ability to detect subtle inconsistencies, complexity introduces a more nuanced effect. Using Kolmogorov complexity as a measure of intrinsic dataset structure, we show that both very simple and highly complex datasets reduce the detectability of synthetic images; generators can learn simple datasets almost perfectly, whereas extreme diversity masks imperfections. In contrast, intermediate-complexity datasets create the most favorable conditions for detection, as generators fail to fully capture the distribution and their errors remain visible.
The Open Catalyst 2025 (OC25) Dataset and Models for Solid-Liquid Interfaces
Catalysis at solid-liquid interfaces plays a central role in the advancement of energy storage and sustainable chemical production technologies. By enabling accurate, long-time scale simulations, machine learning (ML) models have the potential to accelerate the discovery of (electro)catalysts. While prior Open Catalyst datasets (OC20 and OC22) have advanced the field by providing large-scale density functional theory (DFT) data of adsorbates on surfaces at solid-gas interfaces, they do not capture the critical role of solvent and electrolyte effects at solid-liquid interfaces. To bridge this gap, we introduce the Open Catalyst 2025 (OC25) dataset, consisting of 7,801,261 calculations across 1,511,270 unique explicit solvent environments. OC25 constitutes the largest and most diverse solid-liquid interface dataset that is currently available and provides configurational and elemental diversity: spanning 88 elements, commonly used solvents/ions, varying solvent layers, and off-equilibrium sampling. State-of-the-art models trained on the OC25 dataset exhibit energy, force, and solvation energy errors as low as 0.1 eV, 0.015 eV/A, and 0.04 eV, respectively; significantly lower than than the recently released Universal Models for Atoms (UMA-OC20). Additionally, we discuss the impact of the quality of DFT-calculated forces on model training and performance. The dataset and accompanying baseline models are made openly available for the community. We anticipate the dataset to facilitate large length-scale and long-timescale simulations of catalytic transformations at solid-liquid interfaces, advancing molecular-level insights into functional interfaces and enabling the discovery of next-generation energy storage and conversion technologies.
GraphKV: Breaking the Static Selection Paradigm with Graph-Based KV Cache Eviction
Efficient Key-Value (KV) cache management is essential for processing long text sequences in large language models (LLMs), where memory constraints often limit performance. Conventional KV eviction strategies, such as top-k selection based on attention scores, depend on static heuristics that fail to capture the evolving implicit dependencies among tokens during inference. To overcome this, we propose GraphKV, a graph-based framework that redefines token selection for KV cache compression. In GraphKV, tokens are modeled as nodes with importance scores, and edges represent their similarity relationships. Through a decay-signal-propagation mechanism, token importance is dynamically updated by propagating information across the graph, enabling adaptive retention of the most contextually significant tokens. GraphKV can be seamlessly utilized in existing KV cache eviction methods such as SnapKV and PyramidKV in a plug-and-play manner. Codes will be released on Github.
BMFM-DNA: A SNP-aware DNA foundation model to capture variant effects
Large language models (LLMs) trained on text demonstrated remarkable results on natural language processing (NLP) tasks. These models have been adapted to decipher the language of DNA, where sequences of nucleotides act as "words" that encode genomic functions. However, the genome differs fundamentally from natural language, as it lacks clearly defined words or a consistent grammar. Although DNA language models (DNALMs) such as DNABERT, GENA-LM have achieved high level of performance on genome-related biological tasks, these models do not encode biological functions in the presence of sequence variations. To address this problem, we pre-train foundation models that effectively integrate sequence variations, in particular Single Nucleotide Polymorphisms (SNPs), as they underlie important biological functions. Specifically, we use ModernBERT to pre-train two different Biomedical Foundation Models (BMFM), namely, BMFM-DNA-REF in which the model is trained with sequences of varying lengths along with their reverse complements derived from the reference genome and BMFM-DNA-SNP in which the model is trained with sequences created using a novel representation scheme that encodes sequence variations. Our findings indicate that integrating sequence variations into DNALMs helps capture the biological functions as seen in improvements on all fine-tuning tasks. To explore the model's practical utility, we experimented with various strategies for SNP imputation on promoter detection task introduced in DNABERT-2. However, we acknowledge that the current benchmarks are limited in their ability to fully evaluate these models. To enable more comprehensive assessment in the future and encourage community contributions, we release our models through HuggingFace and the code to reproduce the results at https://github.com/BiomedSciAI/biomed-multi-omic
Cosmic reflections I: the structural diversity of simulated and observed low-mass galaxy analogues
Dwarf galaxies serve as powerful laboratories for investigating the underlying physics of galaxy evolution including the impact of baryonic feedback processes and environmental influences. We compare the visual and structural properties of dwarf galaxies in ultra-deep HSC-SSP imaging of the COSMOS field with those measured from realistic HSC-like synthetic observations of dwarfs generated by the Illustris TNG50 and NewHorizon simulations. Using S\'ersic profile fitting and non-parametric morphological metrics (Gini, M_{20}, asymmetry, and concentration), we evaluate the diversity of structural properties in observed and simulated galaxies. Our analysis shows that NewHorizon and TNG50 galaxies lie at opposite extremes of observed structural trends: NewHorizon produces diffuse, extended galaxies with shallow S\'ersic indices, while TNG50 yields compact, concentrated systems with steep indices. Both simulations reproduce observed structural trends more closely at higher stellar masses (M_{star}sim10^{9.5} {rm M_{odot}}) but fail to capture the full diversity of COSMOS dwarfs at lower masses. Non-parametric metrics further show that NewHorizon galaxies exhibit more uneven, clumpy light distributions while TNG50 galaxies have smoother but excessively concentrated profiles. These structural differences reflect underlying differences in their physical prescriptions and are likely driven by differing approaches to ISM physics, supernova feedback and star formation in addition to differences in numerical resolution. Our findings highlight the unique power of low-mass galaxies to constrain differences in simulation physics, especially star formation and feedback. Upcoming surveys from facilities like the Vera C. Rubin Observatory and Euclid will enable more rigorous comparisons with simulations, offering deeper insights into the physical processes shaping galaxy evolution.
An efficient Asymptotic-Preserving scheme for the Boltzmann mixture with disparate mass
In this paper, we develop and implement an efficient asymptotic-preserving (AP) scheme to solve the gas mixture of Boltzmann equations under the disparate mass scaling relevant to the so-called "epochal relaxation" phenomenon. The disparity in molecular masses, ranging across several orders of magnitude, leads to significant challenges in both the evaluation of collision operators and the designing of time-stepping schemes to capture the multi-scale nature of the dynamics. A direct implementation of the spectral method faces prohibitive computational costs as the mass ratio increases due to the need to resolve vastly different thermal velocities. Unlike [I. M. Gamba, S. Jin, and L. Liu, Commun. Math. Sci., 17 (2019), pp. 1257-1289], we propose an alternative approach based on proper truncation of asymptotic expansions of the collision operators, which significantly reduces the computational complexity and works well for small varepsilon. By incorporating the separation of three time scales in the model's relaxation process [P. Degond and B. Lucquin-Desreux, Math. Models Methods Appl. Sci., 6 (1996), pp. 405-436], we design an AP scheme that captures the specific dynamics of the disparate mass model while maintaining computational efficiency. Numerical experiments demonstrate the effectiveness of the proposed scheme in handling large mass ratios of heavy and light species, as well as capturing the epochal relaxation phenomenon.
What If the Input is Expanded in OOD Detection?
Out-of-distribution (OOD) detection aims to identify OOD inputs from unknown classes, which is important for the reliable deployment of machine learning models in the open world. Various scoring functions are proposed to distinguish it from in-distribution (ID) data. However, existing methods generally focus on excavating the discriminative information from a single input, which implicitly limits its representation dimension. In this work, we introduce a novel perspective, i.e., employing different common corruptions on the input space, to expand that. We reveal an interesting phenomenon termed confidence mutation, where the confidence of OOD data can decrease significantly under the corruptions, while the ID data shows a higher confidence expectation considering the resistance of semantic features. Based on that, we formalize a new scoring method, namely, Confidence aVerage (CoVer), which can capture the dynamic differences by simply averaging the scores obtained from different corrupted inputs and the original ones, making the OOD and ID distributions more separable in detection tasks. Extensive experiments and analyses have been conducted to understand and verify the effectiveness of CoVer. The code is publicly available at: https://github.com/tmlr-group/CoVer.
The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
We present our system (denoted as T05) for the VoiceMOS Challenge (VMC) 2024. Our system was designed for the VMC 2024 Track 1, which focused on the accurate prediction of naturalness mean opinion score (MOS) for high-quality synthetic speech. In addition to a pretrained self-supervised learning (SSL)-based speech feature extractor, our system incorporates a pretrained image feature extractor to capture the difference of synthetic speech observed in speech spectrograms. We first separately train two MOS predictors that use either of an SSL-based or spectrogram-based feature. Then, we fine-tune the two predictors for better MOS prediction using the fusion of two extracted features. In the VMC 2024 Track 1, our T05 system achieved first place in 7 out of 16 evaluation metrics and second place in the remaining 9 metrics, with a significant difference compared to those ranked third and below. We also report the results of our ablation study to investigate essential factors of our system.
Swim till You Sink: Computing the Limit of a Game
During 2023, two interesting results were proven about the limit behavior of game dynamics: First, it was shown that there is a game for which no dynamics converges to the Nash equilibria. Second, it was shown that the sink equilibria of a game adequately capture the limit behavior of natural game dynamics. These two results have created a need and opportunity to articulate a principled computational theory of the meaning of the game that is based on game dynamics. Given any game in normal form, and any prior distribution of play, we study the problem of computing the asymptotic behavior of a class of natural dynamics called the noisy replicator dynamics as a limit distribution over the sink equilibria of the game. When the prior distribution has pure strategy support, we prove this distribution can be computed efficiently, in near-linear time to the size of the best-response graph. When the distribution can be sampled -- for example, if it is the uniform distribution over all mixed strategy profiles -- we show through experiments that the limit distribution of reasonably large games can be estimated quite accurately through sampling and simulation.
The Development of a Comprehensive Spanish Dictionary for Phonetic and Lexical Tagging in Socio-phonetic Research (ESPADA)
Pronunciation dictionaries are an important component in the process of speech forced alignment. The accuracy of these dictionaries has a strong effect on the aligned speech data since they help the mapping between orthographic transcriptions and acoustic signals. In this paper, I present the creation of a comprehensive pronunciation dictionary in Spanish (ESPADA) that can be used in most of the dialect variants of Spanish data. Current dictionaries focus on specific regional variants, but with the flexible nature of our tool, it can be readily applied to capture the most common phonetic differences across major dialectal variants. We propose improvements to current pronunciation dictionaries as well as mapping other relevant annotations such as morphological and lexical information. In terms of size, it is currently the most complete dictionary with more than 628,000 entries, representing words from 16 countries. All entries come with their corresponding pronunciations, morphological and lexical tagging, and other relevant information for phonetic analysis: stress patterns, phonotactics, IPA transcriptions, and more. This aims to equip socio-phonetic researchers with a complete open-source tool that enhances dialectal research within socio-phonetic frameworks in the Spanish language.
CUDRT: Benchmarking the Detection of Human vs. Large Language Models Generated Texts
The proliferation of large language models (LLMs) has significantly enhanced text generation capabilities across various industries. However, these models' ability to generate human-like text poses substantial challenges in discerning between human and AI authorship. Despite the effectiveness of existing AI-generated text detectors, their development is hindered by the lack of comprehensive, publicly available benchmarks. Current benchmarks are limited to specific scenarios, such as question answering and text polishing, and predominantly focus on English texts, failing to capture the diverse applications and linguistic nuances of LLMs. To address these limitations, this paper constructs a comprehensive bilingual benchmark in both Chinese and English to evaluate mainstream AI-generated text detectors. We categorize LLM text generation into five distinct operations: Create, Update, Delete, Rewrite, and Translate (CUDRT), encompassing all current LLMs activities. We also establish a robust benchmark evaluation framework to support scalable and reproducible experiments. For each CUDRT category, we have developed extensive datasets to thoroughly assess detector performance. By employing the latest mainstream LLMs specific to each language, our datasets provide a thorough evaluation environment. Extensive experimental results offer critical insights for optimizing AI-generated text detectors and suggest future research directions to improve detection accuracy and generalizability across various scenarios.
The Virtues of Laziness in Model-based RL: A Unified Objective and Algorithms
We propose a novel approach to addressing two fundamental challenges in Model-based Reinforcement Learning (MBRL): the computational expense of repeatedly finding a good policy in the learned model, and the objective mismatch between model fitting and policy computation. Our "lazy" method leverages a novel unified objective, Performance Difference via Advantage in Model, to capture the performance difference between the learned policy and expert policy under the true dynamics. This objective demonstrates that optimizing the expected policy advantage in the learned model under an exploration distribution is sufficient for policy computation, resulting in a significant boost in computational efficiency compared to traditional planning methods. Additionally, the unified objective uses a value moment matching term for model fitting, which is aligned with the model's usage during policy computation. We present two no-regret algorithms to optimize the proposed objective, and demonstrate their statistical and computational gains compared to existing MBRL methods through simulated benchmarks.
Delving into the Openness of CLIP
Contrastive Language-Image Pre-training (CLIP) formulates image classification as an image-to-text matching task, i.e., matching images to the corresponding natural language descriptions instead of discrete category IDs. This allows for open-vocabulary visual recognition, where the model can recognize images from an open class set (also known as an open vocabulary) in a zero-shot manner. However, evaluating the openness of CLIP-like models is challenging, as the models are open to arbitrary vocabulary in theory, but their accuracy varies in practice. To address this, we resort to an incremental perspective to assess the openness through vocabulary expansions, and define extensibility to measure a model's ability to handle novel classes. Our evaluation shows that CLIP-like models are not truly open, and their performance deteriorates as the vocabulary expands. We further dissect the feature space of CLIP from the perspectives of representation alignment and uniformity. Our investigation reveals that the overestimation of openness is due to confusion among competing text features, rather than a failure to capture the similarity between image features and text features of novel classes. We hope that our investigation and analysis will facilitate future research on the CLIP openness issue.
The Chess Transformer: Mastering Play using Generative Language Models
This work demonstrates that natural language transformers can support more generic strategic modeling, particularly for text-archived games. In addition to learning natural language skills, the abstract transformer architecture can generate meaningful moves on a chessboard. With further fine-tuning, the transformer learns complex gameplay by training on 2.8 million chess games in Portable Game Notation. After 30,000 training steps, OpenAI's Generative Pre-trained Transformer (GPT-2) optimizes weights for 774 million parameters. This fine-tuned Chess Transformer generates plausible strategies and displays game formations identifiable as classic openings, such as English or the Slav Exchange. Finally, in live play, the novel model demonstrates a human-to-transformer interface that correctly filters illegal moves and provides a novel method to challenge the transformer's chess strategies. We anticipate future work will build on this transformer's promise, particularly in other strategy games where features can capture the underlying complex rule syntax from simple but expressive player annotations.
The Pitfalls of Simplicity Bias in Neural Networks
Several works have proposed Simplicity Bias (SB)---the tendency of standard training procedures such as Stochastic Gradient Descent (SGD) to find simple models---to justify why neural networks generalize well [Arpit et al. 2017, Nakkiran et al. 2019, Soudry et al. 2018]. However, the precise notion of simplicity remains vague. Furthermore, previous settings that use SB to theoretically justify why neural networks generalize well do not simultaneously capture the non-robustness of neural networks---a widely observed phenomenon in practice [Goodfellow et al. 2014, Jo and Bengio 2017]. We attempt to reconcile SB and the superior standard generalization of neural networks with the non-robustness observed in practice by designing datasets that (a) incorporate a precise notion of simplicity, (b) comprise multiple predictive features with varying levels of simplicity, and (c) capture the non-robustness of neural networks trained on real data. Through theory and empirics on these datasets, we make four observations: (i) SB of SGD and variants can be extreme: neural networks can exclusively rely on the simplest feature and remain invariant to all predictive complex features. (ii) The extreme aspect of SB could explain why seemingly benign distribution shifts and small adversarial perturbations significantly degrade model performance. (iii) Contrary to conventional wisdom, SB can also hurt generalization on the same data distribution, as SB persists even when the simplest feature has less predictive power than the more complex features. (iv) Common approaches to improve generalization and robustness---ensembles and adversarial training---can fail in mitigating SB and its pitfalls. Given the role of SB in training neural networks, we hope that the proposed datasets and methods serve as an effective testbed to evaluate novel algorithmic approaches aimed at avoiding the pitfalls of SB.
WEAVE: Unleashing and Benchmarking the In-context Interleaved Comprehension and Generation
Recent advances in unified multimodal models (UMMs) have enabled impressive progress in visual comprehension and generation. However, existing datasets and benchmarks focus primarily on single-turn interactions, failing to capture the multi-turn, context-dependent nature of real-world image creation and editing. To address this gap, we present WEAVE, the first suite for in-context interleaved cross-modality comprehension and generation. Our suite consists of two complementary parts. WEAVE-100k is a large-scale dataset of 100K interleaved samples spanning over 370K dialogue turns and 500K images, covering comprehension, editing, and generation tasks that require reasoning over historical context. WEAVEBench is a human-annotated benchmark with 100 tasks based on 480 images, featuring a hybrid VLM judger evaluation framework based on both the reference image and the combination of the original image with editing instructions that assesses models' abilities in multi-turn generation, visual memory, and world-knowledge reasoning across diverse domains. Experiments demonstrate that training on WEAVE-100k enables vision comprehension, image editing, and comprehension-generation collaboration capabilities. Furthermore, it facilitates UMMs to develop emergent visual-memory capabilities, while extensive evaluations on WEAVEBench expose the persistent limitations and challenges of current approaches in multi-turn, context-aware image generation and editing. We believe WEAVE provides a view and foundation for studying in-context interleaved comprehension and generation for multi-modal community.
Domain2Vec: Vectorizing Datasets to Find the Optimal Data Mixture without Training
We introduce~Domain2Vec, a novel approach that decomposes any dataset into a linear combination of several meta-domains, a new concept designed to capture the key underlying features of datasets. Domain2Vec maintains a vocabulary of meta-domains and uses a classifier to decompose any given dataset into a domain vector that corresponds to a distribution over this vocabulary. These domain vectors enable the identification of the optimal data mixture for language model (LM) pretraining in a training-free manner under the \textbf{Distribution Alignment Assumption} (DA^{2}), which suggests that when the data distributions of the training set and the validation set are better aligned, a lower validation loss is achieved. Moreover, Domain2vec can be seamlessly integrated into previous works to model the relationship between domain vectors and LM performance, greatly enhancing the efficiency and scalability of previous methods. Extensive experiments demonstrate that Domain2Vec helps find the data mixture that enhances downstream task performance with minimal computational overhead. Specifically, Domain2Vec achieves the same validation loss on Pile-CC using only 51.5% of the computation required when training on the original mixture of The Pile dataset. Under equivalent compute budget, Domain2Vec improves downstream performance by an average of 2.83%.
Incorporating Visual Experts to Resolve the Information Loss in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) are experiencing rapid growth, yielding a plethora of noteworthy contributions in recent months. The prevailing trend involves adopting data-driven methodologies, wherein diverse instruction-following datasets are collected. However, a prevailing challenge persists in these approaches, specifically in relation to the limited visual perception ability, as CLIP-like encoders employed for extracting visual information from inputs. Though these encoders are pre-trained on billions of image-text pairs, they still grapple with the information loss dilemma, given that textual captions only partially capture the contents depicted in images. To address this limitation, this paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism. Specifically, we introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline, aiming to provide a more comprehensive and accurate summarization of visual inputs. Extensive experiments have evaluated its effectiveness of advancing MLLMs, showcasing improved visual perception achieved through the integration of visual experts.
Autoregressive Language Models For Estimating the Entropy of Epic EHR Audit Logs
EHR audit logs are a highly granular stream of events that capture clinician activities, and is a significant area of interest for research in characterizing clinician workflow on the electronic health record (EHR). Existing techniques to measure the complexity of workflow through EHR audit logs (audit logs) involve time- or frequency-based cross-sectional aggregations that are unable to capture the full complexity of a EHR session. We briefly evaluate the usage of transformer-based tabular language model (tabular LM) in measuring the entropy or disorderedness of action sequences within workflow and release the evaluated models publicly.
A Reproduction Study: The Kernel PCA Interpretation of Self-Attention Fails Under Scrutiny
In this reproduction study, we revisit recent claims that self-attention implements kernel principal component analysis (KPCA) (Teo et al., 2024), positing that (i) value vectors V capture the eigenvectors of the Gram matrix of the keys, and (ii) that self-attention projects queries onto the principal component axes of the key matrix K in a feature space. Our analysis reveals three critical inconsistencies: (1) No alignment exists between learned self-attention value vectors and what is proposed in the KPCA perspective, with average similarity metrics (optimal cosine similarity leq 0.32, linear CKA (Centered Kernel Alignment) leq 0.11, kernel CKA leq 0.32) indicating negligible correspondence; (2) Reported decreases in reconstruction loss J_proj, arguably justifying the claim that the self-attention minimizes the projection error of KPCA, are misinterpreted, as the quantities involved differ by orders of magnitude (sim!10^3); (3) Gram matrix eigenvalue statistics, introduced to justify that V captures the eigenvector of the gram matrix, are irreproducible without undocumented implementation-specific adjustments. Across 10 transformer architectures, we conclude that the KPCA interpretation of self-attention lacks empirical support.
Get In Video: Add Anything You Want to the Video
Video editing increasingly demands the ability to incorporate specific real-world instances into existing footage, yet current approaches fundamentally fail to capture the unique visual characteristics of particular subjects and ensure natural instance/scene interactions. We formalize this overlooked yet critical editing paradigm as "Get-In-Video Editing", where users provide reference images to precisely specify visual elements they wish to incorporate into videos. Addressing this task's dual challenges, severe training data scarcity and technical challenges in maintaining spatiotemporal coherence, we introduce three key contributions. First, we develop GetIn-1M dataset created through our automated Recognize-Track-Erase pipeline, which sequentially performs video captioning, salient instance identification, object detection, temporal tracking, and instance removal to generate high-quality video editing pairs with comprehensive annotations (reference image, tracking mask, instance prompt). Second, we present GetInVideo, a novel end-to-end framework that leverages a diffusion transformer architecture with 3D full attention to process reference images, condition videos, and masks simultaneously, maintaining temporal coherence, preserving visual identity, and ensuring natural scene interactions when integrating reference objects into videos. Finally, we establish GetInBench, the first comprehensive benchmark for Get-In-Video Editing scenario, demonstrating our approach's superior performance through extensive evaluations. Our work enables accessible, high-quality incorporation of specific real-world subjects into videos, significantly advancing personalized video editing capabilities.
In Search of the Successful Interpolation: On the Role of Sharpness in CLIP Generalization
Zero-shot models like CLIP are often fine-tuned on a target dataset to improve its accuracy further, but this can compromise out-of-distribution (OOD) robustness. Robust Fine-Tuning (RFT )~wortsman2021robust, which interpolates between the zero-shot and fine-tuned models, has been proposed to address this issue. However, understanding when RFT actually improves OOD error remains limited. In this work, we empirically investigate the robustness of RFT in CLIP models, with a focus on the sharpness of the CLIP model during interpolation. First, we demonstrate that while sharpness may not serve as a reliable indicator for predicting the generalization of modern architectures like CLIP on OOD data, this challenges the conventional belief in the generalization benefits of flat minima in foundation models. However, by examining the role of the straggler layer phenomenon, we show that, unlike overall sharpness, the layer-wise sharpness of straggler layers can reliably capture the generalization performance of interpolated CLIP models on OOD data. Our extensive experiments reveal that layer-wise sharpness correlates with generalization in OOD accuracy for RFT. Furthermore, we demonstrate that by inducing sparsity in the straggler layers, we can mitigate the failure mode phenomenon in RFT. To the best of our knowledge, this is the first work to study the role of sharpness in the success of interpolation in the weight space of CLIP foundation models. Our code is available at https://github.com/alirezaabdollahpour/CLIP_Mode_Connectivity.
CopyScope: Model-level Copyright Infringement Quantification in the Diffusion Workflow
Web-based AI image generation has become an innovative art form that can generate novel artworks with the rapid development of the diffusion model. However, this new technique brings potential copyright infringement risks as it may incorporate the existing artworks without the owners' consent. Copyright infringement quantification is the primary and challenging step towards AI-generated image copyright traceability. Previous work only focused on data attribution from the training data perspective, which is unsuitable for tracing and quantifying copyright infringement in practice because of the following reasons: (1) the training datasets are not always available in public; (2) the model provider is the responsible party, not the image. Motivated by this, in this paper, we propose CopyScope, a new framework to quantify the infringement of AI-generated images from the model level. We first rigorously identify pivotal components within the AI image generation pipeline. Then, we propose to take advantage of Fr\'echet Inception Distance (FID) to effectively capture the image similarity that fits human perception naturally. We further propose the FID-based Shapley algorithm to evaluate the infringement contribution among models. Extensive experiments demonstrate that our work not only reveals the intricacies of infringement quantification but also effectively depicts the infringing models quantitatively, thus promoting accountability in AI image-generation tasks.
Deep Model Compression Also Helps Models Capture Ambiguity
Natural language understanding (NLU) tasks face a non-trivial amount of ambiguous samples where veracity of their labels is debatable among annotators. NLU models should thus account for such ambiguity, but they approximate the human opinion distributions quite poorly and tend to produce over-confident predictions. To address this problem, we must consider how to exactly capture the degree of relationship between each sample and its candidate classes. In this work, we propose a novel method with deep model compression and show how such relationship can be accounted for. We see that more reasonably represented relationships can be discovered in the lower layers and that validation accuracies are converging at these layers, which naturally leads to layer pruning. We also see that distilling the relationship knowledge from a lower layer helps models produce better distribution. Experimental results demonstrate that our method makes substantial improvement on quantifying ambiguity without gold distribution labels. As positive side-effects, our method is found to reduce the model size significantly and improve latency, both attractive aspects of NLU products.
A Part-of-Speech Tagger for Yiddish: First Steps in Tagging the Yiddish Book Center Corpus
We describe the construction and evaluation of a part-of-speech tagger for Yiddish (the first one, to the best of our knowledge). This is the first step in a larger project of automatically assigning part-of-speech tags and syntactic structure to Yiddish text for purposes of linguistic research. We combine two resources for the current work - an 80K word subset of the Penn Parsed Corpus of Historical Yiddish (PPCHY) (Santorini, 2021) and 650 million words of OCR'd Yiddish text from the Yiddish Book Center (YBC). We compute word embeddings on the YBC corpus, and these embeddings are used with a tagger model trained and evaluated on the PPCHY. Yiddish orthography in the YBC corpus has many spelling inconsistencies, and we present some evidence that even simple non-contextualized embeddings are able to capture the relationships among spelling variants without the need to first "standardize" the corpus. We evaluate the tagger performance on a 10-fold cross-validation split, with and without the embeddings, showing that the embeddings improve tagger performance. However, a great deal of work remains to be done, and we conclude by discussing some next steps, including the need for additional annotated training and test data.
Conversations Are Not Flat: Modeling the Dynamic Information Flow across Dialogue Utterances
Nowadays, open-domain dialogue models can generate acceptable responses according to the historical context based on the large-scale pre-trained language models. However, they generally concatenate the dialogue history directly as the model input to predict the response, which we named as the flat pattern and ignores the dynamic information flow across dialogue utterances. In this work, we propose the DialoFlow model, in which we introduce a dynamic flow mechanism to model the context flow, and design three training objectives to capture the information dynamics across dialogue utterances by addressing the semantic influence brought about by each utterance in large-scale pre-training. Experiments on the multi-reference Reddit Dataset and DailyDialog Dataset demonstrate that our DialoFlow significantly outperforms the DialoGPT on the dialogue generation task. Besides, we propose the Flow score, an effective automatic metric for evaluating interactive human-bot conversation quality based on the pre-trained DialoFlow, which presents high chatbot-level correlation (r=0.9) with human ratings among 11 chatbots. Code and pre-trained models will be public. \url{https://github.com/ictnlp/DialoFlow}
Primate Face Identification in the Wild
Ecological imbalance owing to rapid urbanization and deforestation has adversely affected the population of several wild animals. This loss of habitat has skewed the population of several non-human primate species like chimpanzees and macaques and has constrained them to co-exist in close proximity of human settlements, often leading to human-wildlife conflicts while competing for resources. For effective wildlife conservation and conflict management, regular monitoring of population and of conflicted regions is necessary. However, existing approaches like field visits for data collection and manual analysis by experts is resource intensive, tedious and time consuming, thus necessitating an automated, non-invasive, more efficient alternative like image based facial recognition. The challenge in individual identification arises due to unrelated factors like pose, lighting variations and occlusions due to the uncontrolled environments, that is further exacerbated by limited training data. Inspired by human perception, we propose to learn representations that are robust to such nuisance factors and capture the notion of similarity over the individual identity sub-manifolds. The proposed approach, Primate Face Identification (PFID), achieves this by training the network to distinguish between positive and negative pairs of images. The PFID loss augments the standard cross entropy loss with a pairwise loss to learn more discriminative and generalizable features, thus making it appropriate for other related identification tasks like open-set, closed set and verification. We report state-of-the-art accuracy on facial recognition of two primate species, rhesus macaques and chimpanzees under the four protocols of classification, verification, closed-set identification and open-set recognition.
Who's Your Judge? On the Detectability of LLM-Generated Judgments
Large Language Model (LLM)-based judgments leverage powerful LLMs to efficiently evaluate candidate content and provide judgment scores. However, the inherent biases and vulnerabilities of LLM-generated judgments raise concerns, underscoring the urgent need for distinguishing them in sensitive scenarios like academic peer reviewing. In this work, we propose and formalize the task of judgment detection and systematically investigate the detectability of LLM-generated judgments. Unlike LLM-generated text detection, judgment detection relies solely on judgment scores and candidates, reflecting real-world scenarios where textual feedback is often unavailable in the detection process. Our preliminary analysis shows that existing LLM-generated text detection methods perform poorly given their incapability to capture the interaction between judgment scores and candidate content -- an aspect crucial for effective judgment detection. Inspired by this, we introduce J-Detector, a lightweight and transparent neural detector augmented with explicitly extracted linguistic and LLM-enhanced features to link LLM judges' biases with candidates' properties for accurate detection. Experiments across diverse datasets demonstrate the effectiveness of J-Detector and show how its interpretability enables quantifying biases in LLM judges. Finally, we analyze key factors affecting the detectability of LLM-generated judgments and validate the practical utility of judgment detection in real-world scenarios.
Sea-ing Through Scattered Rays: Revisiting the Image Formation Model for Realistic Underwater Image Generation
In recent years, the underwater image formation model has found extensive use in the generation of synthetic underwater data. Although many approaches focus on scenes primarily affected by discoloration, they often overlook the model's ability to capture the complex, distance-dependent visibility loss present in highly turbid environments. In this work, we propose an improved synthetic data generation pipeline that includes the commonly omitted forward scattering term, while also considering a nonuniform medium. Additionally, we collected the BUCKET dataset under controlled turbidity conditions to acquire real turbid footage with the corresponding reference images. Our results demonstrate qualitative improvements over the reference model, particularly under increasing turbidity, with a selection rate of 82. 5\% by survey participants. Data and code can be accessed on the project page: vap.aau.dk/sea-ing-through-scattered-rays.
I'M HOI: Inertia-aware Monocular Capture of 3D Human-Object Interactions
We are living in a world surrounded by diverse and "smart" devices with rich modalities of sensing ability. Conveniently capturing the interactions between us humans and these objects remains far-reaching. In this paper, we present I'm-HOI, a monocular scheme to faithfully capture the 3D motions of both the human and object in a novel setting: using a minimal amount of RGB camera and object-mounted Inertial Measurement Unit (IMU). It combines general motion inference and category-aware refinement. For the former, we introduce a holistic human-object tracking method to fuse the IMU signals and the RGB stream and progressively recover the human motions and subsequently the companion object motions. For the latter, we tailor a category-aware motion diffusion model, which is conditioned on both the raw IMU observations and the results from the previous stage under over-parameterization representation. It significantly refines the initial results and generates vivid body, hand, and object motions. Moreover, we contribute a large dataset with ground truth human and object motions, dense RGB inputs, and rich object-mounted IMU measurements. Extensive experiments demonstrate the effectiveness of I'm-HOI under a hybrid capture setting. Our dataset and code will be released to the community.
Reinforcement Learning for Adaptive Time-Stepping in the Chaotic Gravitational Three-Body Problem
Many problems in astrophysics cover multiple orders of magnitude in spatial and temporal scales. While simulating systems that experience rapid changes in these conditions, it is essential to adapt the (time-) step size to capture the behavior of the system during those rapid changes and use a less accurate time step at other, less demanding, moments. We encounter three problems with traditional methods. Firstly, making such changes requires expert knowledge of the astrophysics as well as of the details of the numerical implementation. Secondly, some parameters that determine the time-step size are fixed throughout the simulation, which means that they do not adapt to the rapidly changing conditions of the problem. Lastly, we would like the choice of time-step size to balance accuracy and computation effort. We address these challenges with Reinforcement Learning by training it to select the time-step size dynamically. We use the integration of a system of three equal-mass bodies that move due to their mutual gravity as an example of its application. With our method, the selected integration parameter adapts to the specific requirements of the problem, both in terms of computation time and accuracy while eliminating the expert knowledge needed to set up these simulations. Our method produces results competitive to existing methods and improve the results found with the most commonly-used values of time-step parameter. This method can be applied to other integrators without further retraining. We show that this extrapolation works for variable time-step integrators but does not perform to the desired accuracy for fixed time-step integrators.
Metric Flow Matching for Smooth Interpolations on the Data Manifold
Matching objectives underpin the success of modern generative models and rely on constructing conditional paths that transform a source distribution into a target distribution. Despite being a fundamental building block, conditional paths have been designed principally under the assumption of Euclidean geometry, resulting in straight interpolations. However, this can be particularly restrictive for tasks such as trajectory inference, where straight paths might lie outside the data manifold, thus failing to capture the underlying dynamics giving rise to the observed marginals. In this paper, we propose Metric Flow Matching (MFM), a novel simulation-free framework for conditional flow matching where interpolants are approximate geodesics learned by minimizing the kinetic energy of a data-induced Riemannian metric. This way, the generative model matches vector fields on the data manifold, which corresponds to lower uncertainty and more meaningful interpolations. We prescribe general metrics to instantiate MFM, independent of the task, and test it on a suite of challenging problems including LiDAR navigation, unpaired image translation, and modeling cellular dynamics. We observe that MFM outperforms the Euclidean baselines, particularly achieving SOTA on single-cell trajectory prediction.
XRBench: An Extended Reality (XR) Machine Learning Benchmark Suite for the Metaverse
Real-time multi-task multi-model (MTMM) workloads, a new form of deep learning inference workloads, are emerging for applications areas like extended reality (XR) to support metaverse use cases. These workloads combine user interactivity with computationally complex machine learning (ML) activities. Compared to standard ML applications, these ML workloads present unique difficulties and constraints. Real-time MTMM workloads impose heterogeneity and concurrency requirements on future ML systems and devices, necessitating the development of new capabilities. This paper begins with a discussion of the various characteristics of these real-time MTMM ML workloads and presents an ontology for evaluating the performance of future ML hardware for XR systems. Next, we present XRBENCH, a collection of MTMM ML tasks, models, and usage scenarios that execute these models in three representative ways: cascaded, concurrent, and cascaded-concurrent for XR use cases. Finally, we emphasize the need for new metrics that capture the requirements properly. We hope that our work will stimulate research and lead to the development of a new generation of ML systems for XR use cases. XRBench is available as an open-source project: https://github.com/XRBench
Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations
Generating graph-structured data requires learning the underlying distribution of graphs. Yet, this is a challenging problem, and the previous graph generative methods either fail to capture the permutation-invariance property of graphs or cannot sufficiently model the complex dependency between nodes and edges, which is crucial for generating real-world graphs such as molecules. To overcome such limitations, we propose a novel score-based generative model for graphs with a continuous-time framework. Specifically, we propose a new graph diffusion process that models the joint distribution of the nodes and edges through a system of stochastic differential equations (SDEs). Then, we derive novel score matching objectives tailored for the proposed diffusion process to estimate the gradient of the joint log-density with respect to each component, and introduce a new solver for the system of SDEs to efficiently sample from the reverse diffusion process. We validate our graph generation method on diverse datasets, on which it either achieves significantly superior or competitive performance to the baselines. Further analysis shows that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule, demonstrating the effectiveness of the system of SDEs in modeling the node-edge relationships. Our code is available at https://github.com/harryjo97/GDSS.
Fantastic Reasoning Behaviors and Where to Find Them: Unsupervised Discovery of the Reasoning Process
Despite the growing reasoning capabilities of recent large language models (LLMs), their internal mechanisms during the reasoning process remain underexplored. Prior approaches often rely on human-defined concepts (e.g., overthinking, reflection) at the word level to analyze reasoning in a supervised manner. However, such methods are limited, as it is infeasible to capture the full spectrum of potential reasoning behaviors, many of which are difficult to define in token space. In this work, we propose an unsupervised framework (namely, RISE: Reasoning behavior Interpretability via Sparse auto-Encoder) for discovering reasoning vectors, which we define as directions in the activation space that encode distinct reasoning behaviors. By segmenting chain-of-thought traces into sentence-level 'steps' and training sparse auto-encoders (SAEs) on step-level activations, we uncover disentangled features corresponding to interpretable behaviors such as reflection and backtracking. Visualization and clustering analyses show that these behaviors occupy separable regions in the decoder column space. Moreover, targeted interventions on SAE-derived vectors can controllably amplify or suppress specific reasoning behaviors, altering inference trajectories without retraining. Beyond behavior-specific disentanglement, SAEs capture structural properties such as response length, revealing clusters of long versus short reasoning traces. More interestingly, SAEs enable the discovery of novel behaviors beyond human supervision. We demonstrate the ability to control response confidence by identifying confidence-related vectors in the SAE decoder space. These findings underscore the potential of unsupervised latent discovery for both interpreting and controllably steering reasoning in LLMs.
AVerImaTeC: A Dataset for Automatic Verification of Image-Text Claims with Evidence from the Web
Textual claims are often accompanied by images to enhance their credibility and spread on social media, but this also raises concerns about the spread of misinformation. Existing datasets for automated verification of image-text claims remain limited, as they often consist of synthetic claims and lack evidence annotations to capture the reasoning behind the verdict. In this work, we introduce AVerImaTeC, a dataset consisting of 1,297 real-world image-text claims. Each claim is annotated with question-answer (QA) pairs containing evidence from the web, reflecting a decomposed reasoning regarding the verdict. We mitigate common challenges in fact-checking datasets such as contextual dependence, temporal leakage, and evidence insufficiency, via claim normalization, temporally constrained evidence annotation, and a two-stage sufficiency check. We assess the consistency of the annotation in AVerImaTeC via inter-annotator studies, achieving a kappa=0.742 on verdicts and 74.7% consistency on QA pairs. We also propose a novel evaluation method for evidence retrieval and conduct extensive experiments to establish baselines for verifying image-text claims using open-web evidence.
LAMP: Learn A Motion Pattern for Few-Shot-Based Video Generation
With the impressive progress in diffusion-based text-to-image generation, extending such powerful generative ability to text-to-video raises enormous attention. Existing methods either require large-scale text-video pairs and a large number of training resources or learn motions that are precisely aligned with template videos. It is non-trivial to balance a trade-off between the degree of generation freedom and the resource costs for video generation. In our study, we present a few-shot-based tuning framework, LAMP, which enables text-to-image diffusion model Learn A specific Motion Pattern with 8~16 videos on a single GPU. Specifically, we design a first-frame-conditioned pipeline that uses an off-the-shelf text-to-image model for content generation so that our tuned video diffusion model mainly focuses on motion learning. The well-developed text-to-image techniques can provide visually pleasing and diverse content as generation conditions, which highly improves video quality and generation freedom. To capture the features of temporal dimension, we expand the pretrained 2D convolution layers of the T2I model to our novel temporal-spatial motion learning layers and modify the attention blocks to the temporal level. Additionally, we develop an effective inference trick, shared-noise sampling, which can improve the stability of videos with computational costs. Our method can also be flexibly applied to other tasks, e.g. real-world image animation and video editing. Extensive experiments demonstrate that LAMP can effectively learn the motion pattern on limited data and generate high-quality videos. The code and models are available at https://rq-wu.github.io/projects/LAMP.
Graph-based Topology Reasoning for Driving Scenes
Understanding the road genome is essential to realize autonomous driving. This highly intelligent problem contains two aspects - the connection relationship of lanes, and the assignment relationship between lanes and traffic elements, where a comprehensive topology reasoning method is vacant. On one hand, previous map learning techniques struggle in deriving lane connectivity with segmentation or laneline paradigms; or prior lane topology-oriented approaches focus on centerline detection and neglect the interaction modeling. On the other hand, the traffic element to lane assignment problem is limited in the image domain, leaving how to construct the correspondence from two views an unexplored challenge. To address these issues, we present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks. To capture the driving scene topology, we introduce three key designs: (1) an embedding module to incorporate semantic knowledge from 2D elements into a unified feature space; (2) a curated scene graph neural network to model relationships and enable feature interaction inside the network; (3) instead of transmitting messages arbitrarily, a scene knowledge graph is devised to differentiate prior knowledge from various types of the road genome. We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2, where our approach outperforms all previous works by a great margin on all perceptual and topological metrics. The code is released at https://github.com/OpenDriveLab/TopoNet
FaceTalk: Audio-Driven Motion Diffusion for Neural Parametric Head Models
We introduce FaceTalk, a novel generative approach designed for synthesizing high-fidelity 3D motion sequences of talking human heads from input audio signal. To capture the expressive, detailed nature of human heads, including hair, ears, and finer-scale eye movements, we propose to couple speech signal with the latent space of neural parametric head models to create high-fidelity, temporally coherent motion sequences. We propose a new latent diffusion model for this task, operating in the expression space of neural parametric head models, to synthesize audio-driven realistic head sequences. In the absence of a dataset with corresponding NPHM expressions to audio, we optimize for these correspondences to produce a dataset of temporally-optimized NPHM expressions fit to audio-video recordings of people talking. To the best of our knowledge, this is the first work to propose a generative approach for realistic and high-quality motion synthesis of volumetric human heads, representing a significant advancement in the field of audio-driven 3D animation. Notably, our approach stands out in its ability to generate plausible motion sequences that can produce high-fidelity head animation coupled with the NPHM shape space. Our experimental results substantiate the effectiveness of FaceTalk, consistently achieving superior and visually natural motion, encompassing diverse facial expressions and styles, outperforming existing methods by 75% in perceptual user study evaluation.
AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking in Real-Time
Accurate whole-body multi-person pose estimation and tracking is an important yet challenging topic in computer vision. To capture the subtle actions of humans for complex behavior analysis, whole-body pose estimation including the face, body, hand and foot is essential over conventional body-only pose estimation. In this paper, we present AlphaPose, a system that can perform accurate whole-body pose estimation and tracking jointly while running in realtime. To this end, we propose several new techniques: Symmetric Integral Keypoint Regression (SIKR) for fast and fine localization, Parametric Pose Non-Maximum-Suppression (P-NMS) for eliminating redundant human detections and Pose Aware Identity Embedding for jointly pose estimation and tracking. During training, we resort to Part-Guided Proposal Generator (PGPG) and multi-domain knowledge distillation to further improve the accuracy. Our method is able to localize whole-body keypoints accurately and tracks humans simultaneously given inaccurate bounding boxes and redundant detections. We show a significant improvement over current state-of-the-art methods in both speed and accuracy on COCO-wholebody, COCO, PoseTrack, and our proposed Halpe-FullBody pose estimation dataset. Our model, source codes and dataset are made publicly available at https://github.com/MVIG-SJTU/AlphaPose.
Zoom Out and Observe: News Environment Perception for Fake News Detection
Fake news detection is crucial for preventing the dissemination of misinformation on social media. To differentiate fake news from real ones, existing methods observe the language patterns of the news post and "zoom in" to verify its content with knowledge sources or check its readers' replies. However, these methods neglect the information in the external news environment where a fake news post is created and disseminated. The news environment represents recent mainstream media opinion and public attention, which is an important inspiration of fake news fabrication because fake news is often designed to ride the wave of popular events and catch public attention with unexpected novel content for greater exposure and spread. To capture the environmental signals of news posts, we "zoom out" to observe the news environment and propose the News Environment Perception Framework (NEP). For each post, we construct its macro and micro news environment from recent mainstream news. Then we design a popularity-oriented and a novelty-oriented module to perceive useful signals and further assist final prediction. Experiments on our newly built datasets show that the NEP can efficiently improve the performance of basic fake news detectors.
Zero-Shot Learning with Common Sense Knowledge Graphs
Zero-shot learning relies on semantic class representations such as hand-engineered attributes or learned embeddings to predict classes without any labeled examples. We propose to learn class representations by embedding nodes from common sense knowledge graphs in a vector space. Common sense knowledge graphs are an untapped source of explicit high-level knowledge that requires little human effort to apply to a range of tasks. To capture the knowledge in the graph, we introduce ZSL-KG, a general-purpose framework with a novel transformer graph convolutional network (TrGCN) for generating class representations. Our proposed TrGCN architecture computes non-linear combinations of node neighbourhoods. Our results show that ZSL-KG improves over existing WordNet-based methods on five out of six zero-shot benchmark datasets in language and vision.
Dense-Captioning Events in Videos
Most natural videos contain numerous events. For example, in a video of a "man playing a piano", the video might also contain "another man dancing" or "a crowd clapping". We introduce the task of dense-captioning events, which involves both detecting and describing events in a video. We propose a new model that is able to identify all events in a single pass of the video while simultaneously describing the detected events with natural language. Our model introduces a variant of an existing proposal module that is designed to capture both short as well as long events that span minutes. To capture the dependencies between the events in a video, our model introduces a new captioning module that uses contextual information from past and future events to jointly describe all events. We also introduce ActivityNet Captions, a large-scale benchmark for dense-captioning events. ActivityNet Captions contains 20k videos amounting to 849 video hours with 100k total descriptions, each with it's unique start and end time. Finally, we report performances of our model for dense-captioning events, video retrieval and localization.
PatternNet: Visual Pattern Mining with Deep Neural Network
Visual patterns represent the discernible regularity in the visual world. They capture the essential nature of visual objects or scenes. Understanding and modeling visual patterns is a fundamental problem in visual recognition that has wide ranging applications. In this paper, we study the problem of visual pattern mining and propose a novel deep neural network architecture called PatternNet for discovering these patterns that are both discriminative and representative. The proposed PatternNet leverages the filters in the last convolution layer of a convolutional neural network to find locally consistent visual patches, and by combining these filters we can effectively discover unique visual patterns. In addition, PatternNet can discover visual patterns efficiently without performing expensive image patch sampling, and this advantage provides an order of magnitude speedup compared to most other approaches. We evaluate the proposed PatternNet subjectively by showing randomly selected visual patterns which are discovered by our method and quantitatively by performing image classification with the identified visual patterns and comparing our performance with the current state-of-the-art. We also directly evaluate the quality of the discovered visual patterns by leveraging the identified patterns as proposed objects in an image and compare with other relevant methods. Our proposed network and procedure, PatterNet, is able to outperform competing methods for the tasks described.
