new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 9

DiffuSpec: Unlocking Diffusion Language Models for Speculative Decoding

As large language models (LLMs) scale up, accuracy improves, but the autoregressive (AR) nature of decoding increases latency since each token requires a serial forward pass. Speculative decoding addresses this by employing a fast drafter to propose multi-token drafts, which are then verified in parallel by the target model. However, many deployments still rely on AR drafters, where sequential passes limit wall-clock gains. We revisit the drafting stage and present DiffuSpec, a training-free drop-in framework that uses a pretrained diffusion language model (DLM) to produce multi-token drafts in a single forward pass, while remaining compatible with standard AR verifiers. Because DLM drafts are generated under bidirectional conditioning, parallel per-position candidates form a token lattice in which the locally highest-probability token at each position need not form a causal left-to-right path. Moreover, DLM drafting requires pre-specifying a draft length, inducing a speed-quality trade-off. To address these challenges, we introduce two practical components: (i) a causal-consistency path search (CPS) over this lattice that extracts a left-to-right path aligned with AR verification; and (ii) an adaptive draft-length (ADL) controller that adjusts next proposal size based on recent acceptance feedback and realized generated length. Across benchmarks, DiffuSpec yields up to 3x wall-clock speedup, establishing diffusion-based drafting as a robust alternative to autoregressive drafters for speculative decoding.

  • 7 authors
·
Sep 28, 2025

CD4LM: Consistency Distillation and aDaptive Decoding for Diffusion Language Models

Autoregressive large language models achieve strong results on many benchmarks, but decoding remains fundamentally latency-limited by sequential dependence on previously generated tokens. Diffusion language models (DLMs) promise parallel generation but suffer from a fundamental static-to-dynamic misalignment: Training optimizes local transitions under fixed schedules, whereas efficient inference requires adaptive "long-jump" refinements through unseen states. Our goal is to enable highly parallel decoding for DLMs with low number of function evaluations while preserving generation quality. To achieve this, we propose CD4LM, a framework that decouples training from inference via Discrete-Space Consistency Distillation (DSCD) and Confidence-Adaptive Decoding (CAD). Unlike standard objectives, DSCD trains a student to be trajectory-invariant, mapping diverse noisy states directly to the clean distribution. This intrinsic robustness enables CAD to dynamically allocate compute resources based on token confidence, aggressively skipping steps without the quality collapse typical of heuristic acceleration. On GSM8K, CD4LM matches the LLaDA baseline with a 5.18x wall-clock speedup; across code and math benchmarks, it strictly dominates the accuracy-efficiency Pareto frontier, achieving a 3.62x mean speedup while improving average accuracy. Code is available at https://github.com/yihao-liang/CDLM

  • 10 authors
·
Jan 5

Dream-VL & Dream-VLA: Open Vision-Language and Vision-Language-Action Models with Diffusion Language Model Backbone

While autoregressive Large Vision-Language Models (VLMs) have achieved remarkable success, their sequential generation often limits their efficacy in complex visual planning and dynamic robotic control. In this work, we investigate the potential of constructing Vision-Language Models upon diffusion-based large language models (dLLMs) to overcome these limitations. We introduce Dream-VL, an open diffusion-based VLM (dVLM) that achieves state-of-the-art performance among previous dVLMs. Dream-VL is comparable to top-tier AR-based VLMs trained on open data on various benchmarks but exhibits superior potential when applied to visual planning tasks. Building upon Dream-VL, we introduce Dream-VLA, a dLLM-based Vision-Language-Action model (dVLA) developed through continuous pre-training on open robotic datasets. We demonstrate that the natively bidirectional nature of this diffusion backbone serves as a superior foundation for VLA tasks, inherently suited for action chunking and parallel generation, leading to significantly faster convergence in downstream fine-tuning. Dream-VLA achieves top-tier performance of 97.2% average success rate on LIBERO, 71.4% overall average on SimplerEnv-Bridge, and 60.5% overall average on SimplerEnv-Fractal, surpassing leading models such as π_0 and GR00T-N1. We also validate that dVLMs surpass AR baselines on downstream tasks across different training objectives. We release both Dream-VL and Dream-VLA to facilitate further research in the community.

MDPO: Overcoming the Training-Inference Divide of Masked Diffusion Language Models

Diffusion language models, as a promising alternative to traditional autoregressive (AR) models, enable faster generation and richer conditioning on bidirectional context. However, they suffer from a key discrepancy between training and inference: during inference, MDLMs progressively reveal the structure of the generated sequence by producing fewer and fewer masked tokens, whereas this structure is ignored in training as tokens are masked at random. Although this discrepancy between training and inference can lead to suboptimal performance, it has been largely overlooked by previous works, leaving closing this gap between the two stages an open problem. To address this, we frame the problem of learning effective denoising trajectories as a sequential decision-making problem and use the resulting framework to apply reinforcement learning. We propose a novel Masked Diffusion Policy Optimization (MDPO) to exploit the Markov property diffusion possesses and explicitly train the model under the same progressive refining schedule used at inference. MDPO matches the performance of the previous state-of-the-art (SOTA) method with 60x fewer gradient updates, while achieving average improvements of 9.6% on MATH500 and 54.2% on Countdown over SOTA when trained within the same number of weight updates. Additionally, we improve the remasking strategy of MDLMs as a plug-in inference replacement to overcome the limitation that the model cannot refine tokens flexibly. This simple yet effective training-free strategy, what we refer to as RCR, consistently improves performance and yields additional gains when combined with MDPO. Our findings establish great potential for investigating the discrepancy between pre-training and inference of MDLMs. Code: https://github.com/autonomousvision/mdpo. Project Page: https://cli212.github.io/MDPO/.

  • 4 authors
·
Aug 18, 2025

A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models

As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation. We have also created a GitHub repository for indexing relevant papers and open resources available at https://github.com/zhanglingzhe0820/Awesome-Parallel-Text-Generation.

  • 11 authors
·
Aug 12, 2025

Learning to Parallel: Accelerating Diffusion Large Language Models via Adaptive Parallel Decoding

Autoregressive decoding in large language models (LLMs) requires O(n) sequential steps for n tokens, fundamentally limiting inference throughput. Recent diffusion-based LLMs (dLLMs) enable parallel token generation through iterative denoising. However, current parallel decoding strategies rely on fixed, input-agnostic heuristics (e.g., confidence thresholds), which fail to adapt to input-specific characteristics, resulting in suboptimal speed-quality trade-offs across diverse NLP tasks. In this work, we explore a more flexible and dynamic approach to parallel decoding. We propose Learning to Parallel Decode (Learn2PD), a framework that trains a lightweight and adaptive filter model to predict, for each token position, whether the current prediction matches the final output. This learned filter approximates an oracle parallel decoding strategy that unmasks tokens only when correctly predicted. Importantly, the filter model is learned in a post-training manner, requiring only a small amount of computation to optimize it (minute-level GPU time). Additionally, we introduce End-of-Text Prediction (EoTP) to detect decoding completion at the end of sequence, avoiding redundant decoding of padding tokens. Experiments on the LLaDA benchmark demonstrate that our method achieves up to 22.58times speedup without any performance drop, and up to 57.51times when combined with KV-Cache.

  • 4 authors
·
Sep 29, 2025

Beyond Autoregression: An Empirical Study of Diffusion Large Language Models for Code Generation

LLMs have become the mainstream approaches to code generation. Existing LLMs mainly employ autoregressive generation, i.e. generating code token-by-token from left to right. However, the underlying autoregressive generation has two limitations in code generation. First, autoregressive LLMs only generate a token at each step, showing low efficiency in practice. Second, programming is a non-sequential process involving back-and-forth editing, while autoregressive LLMs only employ the left-to-right generation order. These two intrinsic limitations hinder the further development of LLMs in code generation. Recently, diffusion LLMs have emerged as a promising alternative. Diffusion LLMs address the above limitations with two advances, including multi-token prediction (i.e. generating multiple tokens at each step) and flexible generation order (i.e. flexibly determining which positions to generate tokens). However, there is no systematic study exploring diffusion LLMs in code generation. To bridge the knowledge gap, we present the first empirical study of diffusion LLMs for code generation. Our study involves 9 representative diffusion LLMs and conduct experiments on 4 widely used benchmarks. Based on the results, we summarize the following findings. (1) Existing diffusion LLMs are competitive with autoregressive LLMs with similar sizes. (2) Diffusion LLMs have a stronger length extrapolation ability than autoregressive LLMs and perform better in long code understanding. (3) We explore factors impacting the effectiveness and efficiency of diffusion LLMs, and provide practical guidance. (4) We discuss several promising further directions to improve diffusion LLMs on code generation. We open-source all source code, data, and results to facilitate the following research. The code is publicly available at https://github.com/zhangyitonggg/dllm4code.

  • 5 authors
·
Sep 14, 2025

Taming the Memory Footprint Crisis: System Design for Production Diffusion LLM Serving

Diffusion Large Language Models (dLLMs) have emerged as a promising alternative to Autoregressive Models (ARMs), utilizing parallel decoding to overcome sequential bottlenecks. However, existing research focuses primarily on kernel-level optimizations, lacking a holistic serving framework that addresses the unique memory dynamics of diffusion processes in production. We identify a critical "memory footprint crisis" specific to dLLMs, driven by monolithic logit tensors and the severe resource oscillation between compute-bound "Refresh" phases and bandwidth-bound "Reuse" phases. To bridge this gap, we present dLLM-Serve, an efficient dLLM serving system that co-optimizes memory footprint, computational scheduling, and generation quality. dLLM-Serve introduces Logit-Aware Activation Budgeting to decompose transient tensor peaks, a Phase-Multiplexed Scheduler to interleave heterogeneous request phases, and Head-Centric Sparse Attention to decouple logical sparsity from physical storage. We evaluate dLLM-Serve on diverse workloads (LiveBench, Burst, OSC) and GPUs (RTX 4090, L40S). Relative to the state-of-the-art baseline, dLLM-Serve improves throughput by 1.61times-1.81times on the consumer-grade RTX 4090 and 1.60times-1.74times on the server-grade NVIDIA L40S, while reducing tail latency by nearly 4times under heavy contention. dLLM-Serve establishes the first blueprint for scalable dLLM inference, converting theoretical algorithmic sparsity into tangible wall-clock acceleration across heterogeneous hardware.

  • 4 authors
·
Dec 18, 2025

Compressed and Smooth Latent Space for Text Diffusion Modeling

Autoregressive language models dominate modern text generation, yet their sequential nature introduces fundamental limitations: decoding is slow, and maintaining global coherence remains challenging. Diffusion models offer a promising alternative by enabling parallel generation and flexible control; however, their application to text generation is hindered by the high dimensionality of token-level representations. We introduce Cosmos, a novel approach to text generation that operates entirely in a compressed, smooth latent space tailored specifically for diffusion. This space is learned using an autoencoder trained simultaneously for token-level reconstruction and alignment with frozen activations from a pretrained language encoder, providing robust semantic grounding and enabling effective perturbation-based augmentations. Empirically, we demonstrate that text representations can be compressed by 8times while maintaining generation quality comparable to token-level diffusion models. Furthermore, increasing the latent sequence length allows Cosmos to surpass both diffusion-based and autoregressive baselines. We evaluate Cosmos on four diverse generative tasks including story generation, question generation, summarization, and detoxification and compare it with various generative paradigms. Cosmos achieves comparable or superior generation quality while offering more than 2times faster inference.

  • 5 authors
·
Jun 26, 2025

Fast-dLLM v2: Efficient Block-Diffusion LLM

Autoregressive (AR) large language models (LLMs) have achieved remarkable performance across a wide range of natural language tasks, yet their inherent sequential decoding limits inference efficiency. In this work, we propose Fast-dLLM v2, a carefully designed block diffusion language model (dLLM) that efficiently adapts pretrained AR models into dLLMs for parallel text generation, requiring only approximately 1B tokens of fine-tuning. This represents a 500x reduction in training data compared to full-attention diffusion LLMs such as Dream (580B tokens), while preserving the original model's performance. Our approach introduces a novel training recipe that combines a block diffusion mechanism with a complementary attention mask, enabling blockwise bidirectional context modeling without sacrificing AR training objectives. To further accelerate decoding, we design a hierarchical caching mechanism: a block-level cache that stores historical context representations across blocks, and a sub-block cache that enables efficient parallel generation within partially decoded blocks. Coupled with our parallel decoding pipeline, Fast-dLLM v2 achieves up to 2.5x speedup over standard AR decoding without compromising generation quality. Extensive experiments across diverse benchmarks demonstrate that Fast-dLLM v2 matches or surpasses AR baselines in accuracy, while delivering state-of-the-art efficiency among dLLMs - marking a significant step toward the practical deployment of fast and accurate LLMs. Code and model will be publicly released.

nvidia NVIDIA
·
Sep 30, 2025 7

From Next-Token to Next-Block: A Principled Adaptation Path for Diffusion LLMs

Large language models (LLMs) excel at generation but dominant autoregressive (AR) decoding is inherently sequential, creating a throughput bottleneck. Diffusion Language Models (DLMs)--especially block-wise variants--enable parallel generation and intra-block bidirectional reasoning, yet training large DLMs from scratch is costly and wastes the knowledge in mature AR checkpoints. Prior "adaptation" attempts either modify logits or randomly grow attention masks to full-sequence diffusion, or simply transplant AR weights into a block-diffusion recipe, leaving a fundamental mismatch between AR causality and block-wise bidirectionality unaddressed. We reframe adaptation as a intra-paradigm path from AR to Block-Diffusion by viewing AR as Block-Diffusion with blocksize=1. Concretely, we design the pathway of adaptation as follows: we use a context-causal attention mask (causal in context, bidirectional only within the active block), an efficient parallel adaptation procedure, an auxiliary AR loss to maximize data utilization and retain pretrained knowledge, and gradual increment of the generation block size. The recipe integrates cleanly with masked block-diffusion and maintains train-inference consistency. Built on these components, NBDiff-7B (Base and Instruct) could inherit the long-context modeling and reasoning capabilities, and achieve state-of-the-art performance among the 7B-class DLMs, delivering strong gains on general-knowledge, math, and code benchmarks over strong baselines. These results demonstrate that principled AR-to-block-diffusion adaptation is an effective and compute-efficient alternative to training DLMs from scratch. Codes: https://github.com/YuchuanTian/NBDiff.

PekingUniversity Peking University
·
Dec 7, 2025 3

DiffSeg30k: A Multi-Turn Diffusion Editing Benchmark for Localized AIGC Detection

Diffusion-based editing enables realistic modification of local image regions, making AI-generated content harder to detect. Existing AIGC detection benchmarks focus on classifying entire images, overlooking the localization of diffusion-based edits. We introduce DiffSeg30k, a publicly available dataset of 30k diffusion-edited images with pixel-level annotations, designed to support fine-grained detection. DiffSeg30k features: 1) In-the-wild images--we collect images or image prompts from COCO to reflect real-world content diversity; 2) Diverse diffusion models--local edits using eight SOTA diffusion models; 3) Multi-turn editing--each image undergoes up to three sequential edits to mimic real-world sequential editing; and 4) Realistic editing scenarios--a vision-language model (VLM)-based pipeline automatically identifies meaningful regions and generates context-aware prompts covering additions, removals, and attribute changes. DiffSeg30k shifts AIGC detection from binary classification to semantic segmentation, enabling simultaneous localization of edits and identification of the editing models. We benchmark three baseline segmentation approaches, revealing significant challenges in semantic segmentation tasks, particularly concerning robustness to image distortions. Experiments also reveal that segmentation models, despite being trained for pixel-level localization, emerge as highly reliable whole-image classifiers of diffusion edits, outperforming established forgery classifiers while showing great potential in cross-generator generalization. We believe DiffSeg30k will advance research in fine-grained localization of AI-generated content by demonstrating the promise and limitations of segmentation-based methods. DiffSeg30k is released at: https://huggingface.co/datasets/Chaos2629/Diffseg30k

  • 5 authors
·
Nov 24, 2025 2

ViLaD: A Large Vision Language Diffusion Framework for End-to-End Autonomous Driving

End-to-end autonomous driving systems built on Vision Language Models (VLMs) have shown significant promise, yet their reliance on autoregressive architectures introduces some limitations for real-world applications. The sequential, token-by-token generation process of these models results in high inference latency and cannot perform bidirectional reasoning, making them unsuitable for dynamic, safety-critical environments. To overcome these challenges, we introduce ViLaD, a novel Large Vision Language Diffusion (LVLD) framework for end-to-end autonomous driving that represents a paradigm shift. ViLaD leverages a masked diffusion model that enables parallel generation of entire driving decision sequences, significantly reducing computational latency. Moreover, its architecture supports bidirectional reasoning, allowing the model to consider both past and future simultaneously, and supports progressive easy-first generation to iteratively improve decision quality. We conduct comprehensive experiments on the nuScenes dataset, where ViLaD outperforms state-of-the-art autoregressive VLM baselines in both planning accuracy and inference speed, while achieving a near-zero failure rate. Furthermore, we demonstrate the framework's practical viability through a real-world deployment on an autonomous vehicle for an interactive parking task, confirming its effectiveness and soundness for practical applications.

  • 9 authors
·
Aug 18, 2025

Seer: Language Instructed Video Prediction with Latent Diffusion Models

Imagining the future trajectory is the key for robots to make sound planning and successfully reach their goals. Therefore, text-conditioned video prediction (TVP) is an essential task to facilitate general robot policy learning. To tackle this task and empower robots with the ability to foresee the future, we propose a sample and computation-efficient model, named Seer, by inflating the pretrained text-to-image (T2I) stable diffusion models along the temporal axis. We enhance the U-Net and language conditioning model by incorporating computation-efficient spatial-temporal attention. Furthermore, we introduce a novel Frame Sequential Text Decomposer module that dissects a sentence's global instruction into temporally aligned sub-instructions, ensuring precise integration into each frame of generation. Our framework allows us to effectively leverage the extensive prior knowledge embedded in pretrained T2I models across the frames. With the adaptable-designed architecture, Seer makes it possible to generate high-fidelity, coherent, and instruction-aligned video frames by fine-tuning a few layers on a small amount of data. The experimental results on Something Something V2 (SSv2), Bridgedata and EpicKitchens-100 datasets demonstrate our superior video prediction performance with around 480-GPU hours versus CogVideo with over 12,480-GPU hours: achieving the 31% FVD improvement compared to the current SOTA model on SSv2 and 83.7% average preference in the human evaluation.

  • 5 authors
·
Mar 26, 2023

DartControl: A Diffusion-Based Autoregressive Motion Model for Real-Time Text-Driven Motion Control

Text-conditioned human motion generation, which allows for user interaction through natural language, has become increasingly popular. Existing methods typically generate short, isolated motions based on a single input sentence. However, human motions are continuous and can extend over long periods, carrying rich semantics. Creating long, complex motions that precisely respond to streams of text descriptions, particularly in an online and real-time setting, remains a significant challenge. Furthermore, incorporating spatial constraints into text-conditioned motion generation presents additional challenges, as it requires aligning the motion semantics specified by text descriptions with geometric information, such as goal locations and 3D scene geometry. To address these limitations, we propose DartControl, in short DART, a Diffusion-based Autoregressive motion primitive model for Real-time Text-driven motion control. Our model effectively learns a compact motion primitive space jointly conditioned on motion history and text inputs using latent diffusion models. By autoregressively generating motion primitives based on the preceding history and current text input, DART enables real-time, sequential motion generation driven by natural language descriptions. Additionally, the learned motion primitive space allows for precise spatial motion control, which we formulate either as a latent noise optimization problem or as a Markov decision process addressed through reinforcement learning. We present effective algorithms for both approaches, demonstrating our model's versatility and superior performance in various motion synthesis tasks. Experiments show our method outperforms existing baselines in motion realism, efficiency, and controllability. Video results are available on the project page: https://zkf1997.github.io/DART/.

  • 3 authors
·
Oct 7, 2024

Energy-Based Diffusion Language Models for Text Generation

Despite remarkable progress in autoregressive language models, alternative generative paradigms beyond left-to-right generation are still being actively explored. Discrete diffusion models, with the capacity for parallel generation, have recently emerged as a promising alternative. Unfortunately, these models still underperform the autoregressive counterparts, with the performance gap increasing when reducing the number of sampling steps. Our analysis reveals that this degradation is a consequence of an imperfect approximation used by diffusion models. In this work, we propose Energy-based Diffusion Language Model (EDLM), an energy-based model operating at the full sequence level for each diffusion step, introduced to improve the underlying approximation used by diffusion models. More specifically, we introduce an EBM in a residual form, and show that its parameters can be obtained by leveraging a pretrained autoregressive model or by finetuning a bidirectional transformer via noise contrastive estimation. We also propose an efficient generation algorithm via parallel important sampling. Comprehensive experiments on language modeling benchmarks show that our model can consistently outperform state-of-the-art diffusion models by a significant margin, and approaches autoregressive models' perplexity. We further show that, without any generation performance drop, our framework offers a 1.3times sampling speedup over existing diffusion models.

  • 8 authors
·
Oct 28, 2024

A Survey on Diffusion Language Models

Diffusion Language Models (DLMs) are rapidly emerging as a powerful and promising alternative to the dominant autoregressive (AR) paradigm. By generating tokens in parallel through an iterative denoising process, DLMs possess inherent advantages in reducing inference latency and capturing bidirectional context, thereby enabling fine-grained control over the generation process. While achieving a several-fold speed-up, recent advancements have allowed DLMs to show performance comparable to their autoregressive counterparts, making them a compelling choice for various natural language processing tasks. In this survey, we provide a holistic overview of the current DLM landscape. We trace its evolution and relationship with other paradigms, such as autoregressive and masked language models, and cover both foundational principles and state-of-the-art models. Our work offers an up-to-date, comprehensive taxonomy and an in-depth analysis of current techniques, from pre-training strategies to advanced post-training methods. Another contribution of this survey is a thorough review of DLM inference strategies and optimizations, including improvements in decoding parallelism, caching mechanisms, and generation quality. We also highlight the latest approaches to multimodal extensions of DLMs and delineate their applications across various practical scenarios. Furthermore, our discussion addresses the limitations and challenges of DLMs, including efficiency, long-sequence handling, and infrastructure requirements, while outlining future research directions to sustain progress in this rapidly evolving field. Project GitHub is available at https://github.com/VILA-Lab/Awesome-DLMs.

  • 4 authors
·
Aug 14, 2025 2

Efficient Parallel Samplers for Recurrent-Depth Models and Their Connection to Diffusion Language Models

Language models with recurrent depth, also referred to as universal or looped when considering transformers, are defined by the capacity to increase their computation through the repetition of layers. Recent efforts in pretraining have demonstrated that these architectures can scale to modern language modeling tasks while exhibiting advantages in reasoning tasks. In this work, we examine the relationship between recurrent-depth models and diffusion language models. Building on their similarities, we develop a new diffusion forcing sampler for these models to accelerate generation. The sampler advances by decoding new tokens at every forward pass of the model, while the latent states of these tokens can be further refined in parallel through recurrence. Theoretically, generation with our sampler is strictly more expressive than the baseline autoregressive generation using the same time budget on modern hardware. Moreover, this sampler, based on principles from diffusion literature, can be directly applied to existing 3.5B recurrent-depth transformers without any tuning, leading to up to a 5x speedup. Consequently, our findings not only provide an efficient mechanism for parallelizing the extra computation in recurrent-depth models at inference, but also suggest that such models can be naturally viewed as strong continuous, though causal, diffusion language models.

From Bits to Rounds: Parallel Decoding with Exploration for Diffusion Language Models

Diffusion Language Models (DLMs) have recently emerged as a strong alternative to autoregressive language models (LMs). DLMs offer comparable accuracy with faster inference speed via parallel decoding. However, standard DLM decoding strategies relying on high-confidence tokens encounter an inherent information-theoretic bottleneck that restricts decoding progress and ultimately slows generation. We demonstrate both theoretically and empirically that prioritizing high-confidence tokens is inherently inefficient. High-probability tokens carry negligible information and strictly relying on them limits the effective progress made in each decoding round. We prove that the number of decoding rounds must grow linearly with the sample's total information (negative log-likelihood) and inversely with the per-round information budget, establishing a bits-to-rounds principle. We also propose Explore-Then-Exploit (ETE), a training-free decoding strategy that maximizes information throughput and decoding efficiency. ETE combines cross-block decoding with targeted exploration of high-uncertainty tokens to reshape the conditional distribution and trigger cascades of confident predictions. Experiments verify our theoretical bounds and demonstrate that ETE consistently reduces the required number of decoding rounds compared to confidence-only baselines without compromising generation quality.

  • 6 authors
·
Nov 26, 2025

CtrlDiff: Boosting Large Diffusion Language Models with Dynamic Block Prediction and Controllable Generation

Although autoregressive models have dominated language modeling in recent years, there has been a growing interest in exploring alternative paradigms to the conventional next-token prediction framework. Diffusion-based language models have emerged as a compelling alternative due to their powerful parallel generation capabilities and inherent editability. However, these models are often constrained by fixed-length generation. A promising direction is to combine the strengths of both paradigms, segmenting sequences into blocks, modeling autoregressive dependencies across blocks while leveraging discrete diffusion to estimate the conditional distribution within each block given the preceding context. Nevertheless, their practical application is often hindered by two key limitations: rigid fixed-length outputs and a lack of flexible control mechanisms. In this work, we address the critical limitations of fixed granularity and weak controllability in current large diffusion language models. We propose CtrlDiff, a dynamic and controllable semi-autoregressive framework that adaptively determines the size of each generation block based on local semantics using reinforcement learning. Furthermore, we introduce a classifier-guided control mechanism tailored to discrete diffusion, which significantly reduces computational overhead while facilitating efficient post-hoc conditioning without retraining. Extensive experiments demonstrate that CtrlDiff sets a new standard among hybrid diffusion models, narrows the performance gap to state-of-the-art autoregressive approaches, and enables effective conditional text generation across diverse tasks.

  • 2 authors
·
May 20, 2025

Discrete Diffusion in Large Language and Multimodal Models: A Survey

In this work, we provide a systematic survey of Discrete Diffusion Language Models (dLLMs) and Discrete Diffusion Multimodal Language Models (dMLLMs). Unlike autoregressive (AR) models, dLLMs and dMLLMs adopt a multi-token, parallel decoding paradigm using full attention and a denoising-based generation strategy. This paradigm naturally enables parallel generation, fine-grained output controllability, and dynamic, response-aware perception. These capabilities are previously difficult to achieve with AR models. Recently, a growing number of industrial-scale proprietary d(M)LLMs, as well as a large number of open-source academic d(M)LLMs, have demonstrated performance comparable to their autoregressive counterparts, while achieving up to 10x acceleration in inference speed. The advancement of discrete diffusion LLMs and MLLMs has been largely driven by progress in two domains. The first is the development of autoregressive LLMs and MLLMs, which has accumulated vast amounts of data, benchmarks, and foundational infrastructure for training and inference. The second contributing domain is the evolution of the mathematical models underlying discrete diffusion. Together, these advancements have catalyzed a surge in dLLMs and dMLLMs research in early 2025. In this work, we present a comprehensive overview of the research in the dLLM and dMLLM domains. We trace the historical development of dLLMs and dMLLMs, formalize the underlying mathematical frameworks, and categorize representative models. We further analyze key techniques for training and inference, and summarize emerging applications across language, vision-language, and biological domains. We conclude by discussing future directions for research and deployment. Paper collection: https://github.com/LiQiiiii/DLLM-Survey

  • 3 authors
·
Jun 16, 2025 3

Accelerating Diffusion Language Model Inference via Efficient KV Caching and Guided Diffusion

Diffusion language models offer parallel token generation and inherent bidirectionality, promising more efficient and powerful sequence modeling compared to autoregressive approaches. However, state-of-the-art diffusion models (e.g., Dream 7B, LLaDA 8B) suffer from slow inference. While they match the quality of similarly sized Autoregressive (AR) Models (e.g., Qwen2.5 7B, Llama3 8B), their iterative denoising requires multiple full-sequence forward passes, resulting in high computational costs and latency, particularly for long input prompts and long-context scenarios. Furthermore, parallel token generation introduces token incoherence problems, and current sampling heuristics suffer from significant quality drops with decreasing denoising steps. We address these limitations with two training-free techniques. First, we propose FreeCache, a Key-Value (KV) approximation caching technique that reuses stable KV projections across denoising steps, effectively reducing the computational cost of DLM inference. Second, we introduce Guided Diffusion, a training-free method that uses a lightweight pretrained autoregressive model to supervise token unmasking, dramatically reducing the total number of denoising iterations without sacrificing quality. We conduct extensive evaluations on open-source reasoning benchmarks, and our combined methods deliver up to a 34x end-to-end speedup without compromising accuracy. For the first time, diffusion language models achieve a comparable and even faster latency as the widely adopted autoregressive models. Our work successfully paved the way for scaling up the diffusion language model to a broader scope of applications across different domains.

  • 7 authors
·
May 27, 2025 1

SLMRec: Distilling Large Language Models into Small for Sequential Recommendation

Sequential Recommendation (SR) task involves predicting the next item a user is likely to interact with, given their past interactions. The SR models examine the sequence of a user's actions to discern more complex behavioral patterns and temporal dynamics. Recent research demonstrates the great impact of LLMs on sequential recommendation systems, either viewing sequential recommendation as language modeling or serving as the backbone for user representation. Although these methods deliver outstanding performance, there is scant evidence of the necessity of a large language model and how large the language model is needed, especially in the sequential recommendation scene. Meanwhile, due to the huge size of LLMs, it is inefficient and impractical to apply a LLM-based model in real-world platforms that often need to process billions of traffic logs daily. In this paper, we explore the influence of LLMs' depth by conducting extensive experiments on large-scale industry datasets. Surprisingly, our motivational experiments reveal that most intermediate layers of LLMs are redundant, indicating that pruning the remaining layers can still maintain strong performance. Motivated by this insight, we empower small language models for SR, namely SLMRec, which adopt a simple yet effective knowledge distillation method. Moreover, SLMRec is orthogonal to other post-training efficiency techniques, such as quantization and pruning, so that they can be leveraged in combination. Comprehensive experimental results illustrate that the proposed SLMRec model attains the best performance using only 13% of the parameters found in LLM-based recommendation models while simultaneously achieving up to 6.6x and 8.0x speedups in training and inference time costs, respectively. Besides, we provide a theoretical justification for why small language models can perform comparably to large language models in SR.

  • 8 authors
·
May 28, 2024

Learning Unmasking Policies for Diffusion Language Models

Diffusion (Large) Language Models (dLLMs) now match the downstream performance of their autoregressive counterparts on many tasks, while holding the promise of being more efficient during inference. One particularly successful variant is masked discrete diffusion, in which a buffer filled with special mask tokens is progressively replaced with tokens sampled from the model's vocabulary. Efficiency can be gained by unmasking several tokens in parallel, but doing too many at once risks degrading the generation quality. Thus, one critical design aspect of dLLMs is the sampling procedure that selects, at each step of the diffusion process, which tokens to replace. Indeed, recent work has found that heuristic strategies such as confidence thresholding lead to both higher quality and token throughput compared to random unmasking. However, such heuristics have downsides: they require manual tuning, and we observe that their performance degrades with larger buffer sizes. In this work, we instead propose to train sampling procedures using reinforcement learning. Specifically, we formalize masked diffusion sampling as a Markov decision process in which the dLLM serves as the environment, and propose a lightweight policy architecture based on a single-layer transformer that maps dLLM token confidences to unmasking decisions. Our experiments show that these trained policies match the performance of state-of-the-art heuristics when combined with semi-autoregressive generation, while outperforming them in the full diffusion setting. We also examine the transferability of these policies, finding that they can generalize to new underlying dLLMs and longer sequence lengths. However, we also observe that their performance degrades when applied to out-of-domain data, and that fine-grained tuning of the accuracy-efficiency trade-off can be challenging with our approach.

apple Apple
·
Dec 9, 2025 2

Improving Reasoning for Diffusion Language Models via Group Diffusion Policy Optimization

Diffusion language models (DLMs) enable parallel, order-agnostic generation with iterative refinement, offering a flexible alternative to autoregressive large language models (LLMs). However, adapting reinforcement learning (RL) fine-tuning to DLMs remains an open challenge because of the intractable likelihood. Pioneering work such as diffu-GRPO estimated token-level likelihoods via one-step unmasking. While computationally efficient, this approach is severely biased. A more principled foundation lies in sequence-level likelihoods, where the evidence lower bound (ELBO) serves as a surrogate. Yet, despite this clean mathematical connection, ELBO-based methods have seen limited adoption due to the prohibitive cost of likelihood evaluation. In this work, we revisit ELBO estimation and disentangle its sources of variance. This decomposition motivates reducing variance through fast, deterministic integral approximations along a few pivotal dimensions. Building on this insight, we introduce Group Diffusion Policy Optimization (GDPO), a new RL algorithm tailored for DLMs. GDPO leverages simple yet effective Semi-deterministic Monte Carlo schemes to mitigate the variance explosion of ELBO estimators under vanilla double Monte Carlo sampling, yielding a provably lower-variance estimator under tight evaluation budgets. Empirically, GDPO achieves consistent gains over pretrained checkpoints and outperforms diffu-GRPO, one of the state-of-the-art baselines, on the majority of math, reasoning, and coding benchmarks.

  • 7 authors
·
Oct 9, 2025

LongLLaDA: Unlocking Long Context Capabilities in Diffusion LLMs

Large Language Diffusion Models, or diffusion LLMs, have emerged as a significant focus in NLP research, with substantial effort directed toward understanding their scalability and downstream task performance. However, their long-context capabilities remain unexplored, lacking systematic analysis or methods for context extension. In this work, we present the first systematic investigation comparing the long-context performance of diffusion LLMs and traditional auto-regressive LLMs. We first identify a unique characteristic of diffusion LLMs, unlike auto-regressive LLMs, they maintain remarkably \textit{stable perplexity} during direct context extrapolation. Furthermore, where auto-regressive models fail outright during the Needle-In-A-Haystack task with context exceeding their pretrained length, we discover diffusion LLMs exhibit a distinct \textit{local perception} phenomenon, enabling successful retrieval from recent context segments. We explain both phenomena through the lens of Rotary Position Embedding (RoPE) scaling theory. Building on these observations, we propose LongLLaDA, a training-free method that integrates LLaDA with the NTK-based RoPE extrapolation. Our results validate that established extrapolation scaling laws remain effective for extending the context windows of diffusion LLMs. Furthermore, we identify long-context tasks where diffusion LLMs outperform auto-regressive LLMs and others where they fall short. Consequently, this study establishes the first context extrapolation method for diffusion LLMs while providing essential theoretical insights and empirical benchmarks critical for advancing future research on long-context diffusion LLMs.

  • 6 authors
·
Jun 17, 2025 3

dKV-Cache: The Cache for Diffusion Language Models

Diffusion Language Models (DLMs) have been seen as a promising competitor for autoregressive language models. However, diffusion language models have long been constrained by slow inference. A core challenge is that their non-autoregressive architecture and bidirectional attention preclude the key-value cache that accelerates decoding. We address this bottleneck by proposing a KV-cache-like mechanism, delayed KV-Cache, for the denoising process of DLMs. Our approach is motivated by the observation that different tokens have distinct representation dynamics throughout the diffusion process. Accordingly, we propose a delayed and conditioned caching strategy for key and value states. We design two complementary variants to cache key and value step-by-step: (1) dKV-Cache-Decode, which provides almost lossless acceleration, and even improves performance on long sequences, suggesting that existing DLMs may under-utilise contextual information during inference. (2) dKV-Cache-Greedy, which has aggressive caching with reduced lifespan, achieving higher speed-ups with quadratic time complexity at the cost of some performance degradation. dKV-Cache, in final, achieves from 2-10x speedup in inference, largely narrowing the gap between ARs and DLMs. We evaluate our dKV-Cache on several benchmarks, delivering acceleration across general language understanding, mathematical, and code-generation benchmarks. Experiments demonstrate that cache can also be used in DLMs, even in a training-free manner from current DLMs.

  • 4 authors
·
May 21, 2025 2

Beyond Confidence: Adaptive and Coherent Decoding for Diffusion Language Models

Diffusion Language Models (DLMs) have recently achieved significant success due to their any-order generation capabilities. However, existing inference methods typically rely on local, immediate-step metrics such as confidence or entropy which inherently lack a more reliable perspective. This limitation frequently leads to inconsistent sampling trajectories and suboptimal generation quality. To address this, we propose Coherent Contextual Decoding (CCD), a novel inference framework built upon two core innovations. First, CCD employs a trajectory rectification mechanism that leverages historical context to enhance sequence coherence, enabling the early rejection of suboptimal paths. We demonstrate that this mechanism is theoretically equivalent to modeling the consistency of historical steps via the conditional mutual information between context and token predictions. Building on this theoretical insight, we further address the inefficiency of conventional uniform decoding budgets. Instead of rigid allocations based on diffusion steps, we introduce an adaptive sampling strategy that dynamically adjusts the unmasking budget for each step according to our consistency metric. Consequently, our method significantly improves the quality of generation trajectories while accelerating the sampling process. Empirically, our method achieves a simultaneous enhancement in both inference speed and performance across diverse benchmarks on Dream and LLaDA, delivering up to 3.48x speedup alongside 3.91% performance improvement.

  • 10 authors
·
Nov 26, 2025

Zonkey: A Hierarchical Diffusion Language Model with Differentiable Tokenization and Probabilistic Attention

Large language models (LLMs) have revolutionized natural language processing, yet they remain constrained by fixed, non-differentiable tokenizers like Byte Pair Encoding (BPE), which hinder end-to-end optimization and adaptability to noisy or domain-specific data. We introduce Zonkey, a hierarchical diffusion model that addresses these limitations through a fully trainable pipeline from raw characters to document-level representations. At its core is a differentiable tokenizer (Segment Splitter) that learns probabilistic beginning-of-sequence (BOS) decisions, enabling adaptive splits that emerge as linguistically meaningful (e.g., word boundaries at spaces, sentence starts at periods) without explicit supervision. This differentiability is enabled by our novel Probabilistic Attention mechanism, which incorporates position-specific existence probabilities to simulate soft masking over theoretically infinite sequences while preserving gradients. Sequences decay probabilistically rather than relying on end-of-sequence tokens, supporting variable-length outputs. Hierarchical levels compress sequences into higher abstractions (e.g., character n-grams to word-like vectors, then sentence-like), with reconstruction via our Denoising Diffusion Mixed Model (DDMM) for stable and efficient denoising in latent space. A Stitcher ensures overlap invariance across segments. Trained end-to-end on Wikipedia, Zonkey generates coherent, variable-length text from noise, demonstrating emergent hierarchies and promising qualitative alignment to data distributions compared to entropy-based learnable tokenizers. Our approach advances toward fully gradient-based LLMs, with potential for better domain adaptation and scalable generation. We release the source code for training and reproducing our experiments.

  • 1 authors
·
Jan 29

Coevolutionary Continuous Discrete Diffusion: Make Your Diffusion Language Model a Latent Reasoner

Diffusion language models, especially masked discrete diffusion models, have achieved great success recently. While there are some theoretical and primary empirical results showing the advantages of latent reasoning with looped transformers or continuous chain-of-thoughts, continuous diffusion models typically underperform their discrete counterparts. In this paper, we argue that diffusion language models do not necessarily need to be in the discrete space. In particular, we prove that continuous diffusion models have stronger expressivity than discrete diffusions and looped transformers. We attribute the contradiction between the theoretical expressiveness and empirical performance to their practical trainability: while continuous diffusion provides intermediate supervision that looped transformers lack, they introduce additional difficulty decoding tokens into the discrete token space from the continuous representation space. We therefore propose Coevolutionary Continuous Discrete Diffusion (CCDD), which defines a joint multimodal diffusion process on the union of a continuous representation space and a discrete token space, leveraging a single model to simultaneously denoise in the joint space. By combining two modalities, CCDD is expressive with rich semantics in the latent space, as well as good trainability and sample quality with the help of explicit discrete tokens. We also propose effective architectures and advanced training/sampling techniques for CCDD, which reveals strong empirical performance in extensive language modeling experiments on real-world tasks.

  • 10 authors
·
Oct 3, 2025

Diffusion Language Models Know the Answer Before Decoding

Diffusion language models (DLMs) have recently emerged as an alternative to autoregressive approaches, offering parallel sequence generation and flexible token orders. However, their inference remains slower than that of autoregressive models, primarily due to the cost of bidirectional attention and the large number of refinement steps required for high quality outputs. In this work, we highlight and leverage an overlooked property of DLMs early answer convergence: in many cases, the correct answer can be internally identified by half steps before the final decoding step, both under semi-autoregressive and random remasking schedules. For example, on GSM8K and MMLU, up to 97% and 99% of instances, respectively, can be decoded correctly using only half of the refinement steps. Building on this observation, we introduce Prophet, a training-free fast decoding paradigm that enables early commit decoding. Specifically, Prophet dynamically decides whether to continue refinement or to go "all-in" (i.e., decode all remaining tokens in one step), using the confidence gap between the top-2 prediction candidates as the criterion. It integrates seamlessly into existing DLM implementations, incurs negligible overhead, and requires no additional training. Empirical evaluations of LLaDA-8B and Dream-7B across multiple tasks show that Prophet reduces the number of decoding steps by up to 3.4x while preserving high generation quality. These results recast DLM decoding as a problem of when to stop sampling, and demonstrate that early decode convergence provides a simple yet powerful mechanism for accelerating DLM inference, complementary to existing speedup techniques. Our code is publicly available at https://github.com/pixeli99/Prophet.

  • 9 authors
·
Aug 27, 2025 2

Text Is All You Need: Learning Language Representations for Sequential Recommendation

Sequential recommendation aims to model dynamic user behavior from historical interactions. Existing methods rely on either explicit item IDs or general textual features for sequence modeling to understand user preferences. While promising, these approaches still struggle to model cold-start items or transfer knowledge to new datasets. In this paper, we propose to model user preferences and item features as language representations that can be generalized to new items and datasets. To this end, we present a novel framework, named Recformer, which effectively learns language representations for sequential recommendation. Specifically, we propose to formulate an item as a "sentence" (word sequence) by flattening item key-value attributes described by text so that an item sequence for a user becomes a sequence of sentences. For recommendation, Recformer is trained to understand the "sentence" sequence and retrieve the next "sentence". To encode item sequences, we design a bi-directional Transformer similar to the model Longformer but with different embedding layers for sequential recommendation. For effective representation learning, we propose novel pretraining and finetuning methods which combine language understanding and recommendation tasks. Therefore, Recformer can effectively recommend the next item based on language representations. Extensive experiments conducted on six datasets demonstrate the effectiveness of Recformer for sequential recommendation, especially in low-resource and cold-start settings.

  • 7 authors
·
May 23, 2023

DIFFA: Large Language Diffusion Models Can Listen and Understand

Recent advances in Large language models (LLMs) have shown remarkable capabilities across textual and multimodal domains. In parallel, diffusion-based language models have emerged as a promising alternative to the autoregressive paradigm, offering improved controllability, bidirectional context modeling, and robust generation. However, their application to the audio modality remains underexplored. In this work, we introduce DIFFA, the first diffusion-based Large Audio-Language Model designed to perform spoken language understanding. DIFFA integrates a frozen diffusion language model with a lightweight dual-adapter architecture that bridges speech understanding and natural language reasoning. We employ a two-stage training pipeline: first, aligning semantic representations via an ASR objective; then, learning instruction-following abilities through synthetic audio-caption pairs automatically generated by prompting LLMs. Despite being trained on only 960 hours of ASR and 127 hours of synthetic instruction data, DIFFA demonstrates competitive performance on major benchmarks, including MMSU, MMAU, and VoiceBench, outperforming several autoregressive open-source baselines. Our results reveal the potential of diffusion-based language models for efficient and scalable audio understanding, opening a new direction for speech-driven AI. Our code will be available at https://github.com/NKU-HLT/DIFFA.git.

  • 12 authors
·
Jul 24, 2025

Quantization Meets dLLMs: A Systematic Study of Post-training Quantization for Diffusion LLMs

Recent advances in diffusion large language models (dLLMs) have introduced a promising alternative to autoregressive (AR) LLMs for natural language generation tasks, leveraging full attention and denoising-based decoding strategies. However, the deployment of these models on edge devices remains challenging due to their massive parameter scale and high resource demands. While post-training quantization (PTQ) has emerged as a widely adopted technique for compressing AR LLMs, its applicability to dLLMs remains largely unexplored. In this work, we present the first systematic study on quantizing diffusion-based language models. We begin by identifying the presence of activation outliers, characterized by abnormally large activation values that dominate the dynamic range. These outliers pose a key challenge to low-bit quantization, as they make it difficult to preserve precision for the majority of values. More importantly, we implement state-of-the-art PTQ methods and conduct a comprehensive evaluation across multiple task types and model variants. Our analysis is structured along four key dimensions: bit-width, quantization method, task category, and model type. Through this multi-perspective evaluation, we offer practical insights into the quantization behavior of dLLMs under different configurations. We hope our findings provide a foundation for future research in efficient dLLM deployment. All codes and experimental setups will be released to support the community.

  • 9 authors
·
Aug 20, 2025 2

Revolutionizing Reinforcement Learning Framework for Diffusion Large Language Models

We propose TraceRL, a trajectory-aware reinforcement learning framework for diffusion language models (DLMs) that incorporates preferred inference trajectory into post-training, and is applicable across different architectures. Equipped with a diffusion-based value model that enhances training stability, we demonstrate improved reasoning performance on complex math and coding tasks. Besides, it can also be applied to adapt block-specific models to larger blocks, which improves sampling flexibility. Employing TraceRL, we derive a series of state-of-the-art diffusion language models, namely TraDo. Although smaller than 7B-scale AR models, TraDo-4B-Instruct still consistently outperforms them across complex math reasoning tasks. TraDo-8B-Instruct achieves relative accuracy improvements of 6.1% over Qwen2.5-7B-Instruct and 51.3% over Llama3.1-8B-Instruct on mathematical reasoning benchmarks. Through curriculum learning, we also derive the first long-CoT DLM, outperforming Qwen2.5-7B-Instruct on MATH500 with an 18.1% relative accuracy gain. To facilitate reproducible research and practical applications, we release a comprehensive open-source framework for building, training, and deploying diffusion LLMs across diverse architectures. The framework integrates accelerated KV-cache techniques and inference engines for both inference and reinforcement learning, and includes implementations of various supervised fine-tuning and RL methods for mathematics, coding, and general tasks. Code and Models: https://github.com/Gen-Verse/dLLM-RL

  • 6 authors
·
Sep 8, 2025 5

Efficient-DLM: From Autoregressive to Diffusion Language Models, and Beyond in Speed

Diffusion language models (dLMs) have emerged as a promising paradigm that enables parallel, non-autoregressive generation, but their learning efficiency lags behind that of autoregressive (AR) language models when trained from scratch. To this end, we study AR-to-dLM conversion to transform pretrained AR models into efficient dLMs that excel in speed while preserving AR models' task accuracy. We achieve this by identifying limitations in the attention patterns and objectives of existing AR-to-dLM methods and then proposing principles and methodologies for more effective AR-to-dLM conversion. Specifically, we first systematically compare different attention patterns and find that maintaining pretrained AR weight distributions is critical for effective AR-to-dLM conversion. As such, we introduce a continuous pretraining scheme with a block-wise attention pattern, which remains causal across blocks while enabling bidirectional modeling within each block. We find that this approach can better preserve pretrained AR models' weight distributions than fully bidirectional modeling, in addition to its known benefit of enabling KV caching, and leads to a win-win in accuracy and efficiency. Second, to mitigate the training-test gap in mask token distributions (uniform vs. highly left-to-right), we propose a position-dependent token masking strategy that assigns higher masking probabilities to later tokens during training to better mimic test-time behavior. Leveraging this framework, we conduct extensive studies of dLMs' attention patterns, training dynamics, and other design choices, providing actionable insights into scalable AR-to-dLM conversion. These studies lead to the Efficient-DLM family, which outperforms state-of-the-art AR models and dLMs, e.g., our Efficient-DLM 8B achieves +5.4%/+2.7% higher accuracy with 4.5x/2.7x higher throughput compared to Dream 7B and Qwen3 4B, respectively.

nvidia NVIDIA
·
Dec 15, 2025 1

Unifying Continuous and Discrete Text Diffusion with Non-simultaneous Diffusion Processes

Diffusion models have emerged as a promising approach for text generation, with recent works falling into two main categories: discrete and continuous diffusion models. Discrete diffusion models apply token corruption independently using categorical distributions, allowing for different diffusion progress across tokens but lacking fine-grained control. Continuous diffusion models map tokens to continuous spaces and apply fine-grained noise, but the diffusion progress is uniform across tokens, limiting their ability to capture semantic nuances. To address these limitations, we propose \underline{N}on-simultan\underline{e}ous C\underline{o}ntinuous \underline{Diff}usion Models (NeoDiff), a novel diffusion model that integrates the strengths of both discrete and continuous approaches. NeoDiff introduces a Poisson diffusion process for the forward process, enabling a flexible and fine-grained noising paradigm, and employs a time predictor for the reverse process to adaptively modulate the denoising progress based on token semantics. Furthermore, NeoDiff utilizes an optimized schedule for inference to ensure more precise noise control and improved performance. Our approach unifies the theories of discrete and continuous diffusion models, offering a more principled and effective framework for text generation. Experimental results on several text generation tasks demonstrate NeoDiff's superior performance compared to baselines of non-autoregressive continuous and discrete diffusion models, iterative-based methods and autoregressive diffusion-based methods. These results highlight NeoDiff's potential as a powerful tool for generating high-quality text and advancing the field of diffusion-based text generation.

  • 3 authors
·
May 28, 2025

LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation?

Diffusion models have exhibited remarkable capabilities in text-to-image generation. However, their performance in image-to-text generation, specifically image captioning, has lagged behind Auto-Regressive (AR) models, casting doubt on their applicability for such tasks. In this work, we revisit diffusion models, highlighting their capacity for holistic context modeling and parallel decoding. With these benefits, diffusion models can alleviate the inherent limitations of AR methods, including their slow inference speed, error propagation, and unidirectional constraints. Furthermore, we identify the prior underperformance of diffusion models stemming from the absence of an effective latent space for image-text alignment, and the discrepancy between continuous diffusion processes and discrete textual data. In response, we introduce a novel architecture, LaDiC, which utilizes a split BERT to create a dedicated latent space for captions and integrates a regularization module to manage varying text lengths. Our framework also includes a diffuser for semantic image-to-text conversion and a Back&Refine technique to enhance token interactivity during inference. LaDiC achieves state-of-the-art performance for diffusion-based methods on the MS COCO dataset with 38.2 BLEU@4 and 126.2 CIDEr, demonstrating exceptional performance without pre-training or ancillary modules. This indicates strong competitiveness with AR models, revealing the previously untapped potential of diffusion models in image-to-text generation.

  • 8 authors
·
Apr 16, 2024

Context-Aware Initialization for Reducing Generative Path Length in Diffusion Language Models

Diffusion Large Language Models (DLLMs) enable fully parallel token decoding but often remain impractical at inference time due to the many denoising iterations required to refine an information-free, fully masked initialization into coherent text. Most existing acceleration methods focus on traversing this generative trajectory more efficiently via improved solvers or sampling strategies. We advance a complementary perspective: shorten the trajectory itself by starting closer to the target distribution through context-aware initialization. We propose a training-free interface that injects prompt-conditioned priors from a lightweight auxiliary model into the diffusion initialization, and instantiate it with two mechanisms: discrete token injection and representation-level embedding interpolation. Because injected priors can be imperfect and unmask-only decoding can over-commit early, we also introduce a simple confidence-based remasking mechanism as a form of prior skepticism. Preliminary evidence on GSM8K suggests that context-aware initialization can substantially reduce denoising iterations (about 35\% fewer function evaluations in our setting), while also exposing a key open challenge: naive warm-starting can degrade final accuracy relative to strong diffusion baselines. We use these findings to motivate a research agenda around calibration, revision mechanisms, and representation alignment for reliable warm-started diffusion decoding.

  • 4 authors
·
Dec 21, 2025

Saber: An Efficient Sampling with Adaptive Acceleration and Backtracking Enhanced Remasking for Diffusion Language Model

Diffusion language models (DLMs) are emerging as a powerful and promising alternative to the dominant autoregressive paradigm, offering inherent advantages in parallel generation and bidirectional context modeling. However, the performance of DLMs on code generation tasks, which have stronger structural constraints, is significantly hampered by the critical trade-off between inference speed and output quality. We observed that accelerating the code generation process by reducing the number of sampling steps usually leads to a catastrophic collapse in performance. In this paper, we introduce efficient Sampling with Adaptive acceleration and Backtracking Enhanced Remasking (i.e., Saber), a novel training-free sampling algorithm for DLMs to achieve better inference speed and output quality in code generation. Specifically, Saber is motivated by two key insights in the DLM generation process: 1) it can be adaptively accelerated as more of the code context is established; 2) it requires a backtracking mechanism to reverse the generated tokens. Extensive experiments on multiple mainstream code generation benchmarks show that Saber boosts Pass@1 accuracy by an average improvement of 1.9% over mainstream DLM sampling methods, meanwhile achieving an average 251.4% inference speedup. By leveraging the inherent advantages of DLMs, our work significantly narrows the performance gap with autoregressive models in code generation.

  • 13 authors
·
Oct 20, 2025