- T1: A Tool-Oriented Conversational Dataset for Multi-Turn Agentic Planning Large Language Models (LLMs) have demonstrated impressive capabilities as intelligent agents capable of solving complex problems. However, effective planning in scenarios involving dependencies between API or tool calls-particularly in multi-turn conversations-remains a significant challenge. To address this, we introduce T1, a tool-augmented, multi-domain, multi-turn conversational dataset specifically designed to capture and manage inter-tool dependencies across diverse domains. T1 enables rigorous evaluation of agents' ability to coordinate tool use across nine distinct domains (4 single domain and 5 multi-domain) with the help of an integrated caching mechanism for both short- and long-term memory, while supporting dynamic replanning-such as deciding whether to recompute or reuse cached results. Beyond facilitating research on tool use and planning, T1 also serves as a benchmark for evaluating the performance of open-source language models. We present results powered by T1-Agent, highlighting their ability to plan and reason in complex, tool-dependent scenarios. 9 authors · May 22, 2025
9 Memory-T1: Reinforcement Learning for Temporal Reasoning in Multi-session Agents Temporal reasoning over long, multi-session dialogues is a critical capability for conversational agents. However, existing works and our pilot study have shown that as dialogue histories grow in length and accumulate noise, current long-context models struggle to accurately identify temporally pertinent information, significantly impairing reasoning performance. To address this, we introduce Memory-T1, a framework that learns a time-aware memory selection policy using reinforcement learning (RL). It employs a coarse-to-fine strategy, first pruning the dialogue history into a candidate set using temporal and relevance filters, followed by an RL agent that selects the precise evidence sessions. The RL training is guided by a multi-level reward function optimizing (i) answer accuracy, (ii) evidence grounding, and (iii) temporal consistency. In particular, the temporal consistency reward provides a dense signal by evaluating alignment with the query time scope at both the session-level (chronological proximity) and the utterance-level (chronological fidelity), enabling the agent to resolve subtle chronological ambiguities. On the Time-Dialog benchmark, Memory-T1 boosts a 7B model to an overall score of 67.0\%, establishing a new state-of-the-art performance for open-source models and outperforming a 14B baseline by 10.2\%. Ablation studies show temporal consistency and evidence grounding rewards jointly contribute to a 15.0\% performance gain. Moreover, Memory-T1 maintains robustness up to 128k tokens, where baseline models collapse, proving effectiveness against noise in extensive dialogue histories. The code and datasets are publicly available at https://github.com/Elvin-Yiming-Du/Memory-T1/ 14 authors · Dec 23, 2025 2
- 6G-Bench: An Open Benchmark for Semantic Communication and Network-Level Reasoning with Foundation Models in AI-Native 6G Networks This paper introduces 6G-Bench, an open benchmark for evaluating semantic communication and network-level reasoning in AI-native 6G networks. 6G-Bench defines a taxonomy of 30 decision-making tasks (T1--T30) extracted from ongoing 6G and AI-agent standardization activities in 3GPP, IETF, ETSI, ITU-T, and the O-RAN Alliance, and organizes them into five standardization-aligned capability categories. Starting from 113,475 scenarios, we generate a balanced pool of 10,000 very-hard multiple-choice questions using task-conditioned prompts that enforce multi-step quantitative reasoning under uncertainty and worst-case regret minimization over multi-turn horizons. After automated filtering and expert human validation, 3,722 questions are retained as a high-confidence evaluation set, while the full pool is released to support training and fine-tuning of 6G-specialized models. Using 6G-Bench, we evaluate 22 foundation models spanning dense and mixture-of-experts architectures, short- and long-context designs (up to 1M tokens), and both open-weight and proprietary systems. Across models, deterministic single-shot accuracy (pass@1) spans a wide range from 0.22 to 0.82, highlighting substantial variation in semantic reasoning capability. Leading models achieve intent and policy reasoning accuracy in the range 0.87--0.89, while selective robustness analysis on reasoning-intensive tasks shows pass@5 values ranging from 0.20 to 0.91. To support open science and reproducibility, we release the 6G-Bench dataset on GitHub: https://github.com/maferrag/6G-Bench 3 authors · Feb 9