--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:200000 - loss:MSELoss base_model: nreimers/TinyBERT_L-4_H-312_v2 widget: - source_sentence: A young adolescent is jumping into a pool. sentences: - A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind. - Two young asian men are squatting. - Boy dressed in blue holds a toy. - source_sentence: At an outdoor event in an Asian-themed area, a crowd congregates as one person in a yellow Chinese dragon costume confronts the camera. sentences: - the animal is running - The children are watching TV at home. - Three young boys one is holding a camera and another is holding a green toy all are wearing t-shirt and smiling. - source_sentence: A man with a shopping cart is studying the shelves in a supermarket aisle. sentences: - A girl is using an apple laptop with her headphones in her ears. - There are three men in this picture, two are on motorbikes, one of the men has a large piece of furniture on the back of his bike, the other is about to be handed a piece of paper by a man in a white shirt. - A large group of people are gathered outside of a brick building lit with spotlights. - source_sentence: The door is open. sentences: - People are playing music. - Children are swimming at the beach. - Women are celebrating at a bar. - source_sentence: A small group of children are standing in a classroom and one of them has a foot in a trashcan, which also has a rope leading out of it. sentences: - Some men with jerseys are in a bar, watching a soccer match. - the guy is dead - There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - negative_mse co2_eq_emissions: emissions: 2.926167696856558 energy_consumed: 0.010933957958824602 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.061 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev type: sts-dev metrics: - type: pearson_cosine value: 0.7997631774603949 name: Pearson Cosine - type: spearman_cosine value: 0.8135859065618778 name: Spearman Cosine - task: type: knowledge-distillation name: Knowledge Distillation dataset: name: Unknown type: unknown metrics: - type: negative_mse value: -50.67923665046692 name: Negative Mse - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test type: sts-test metrics: - type: pearson_cosine value: 0.7475268108816401 name: Pearson Cosine - type: spearman_cosine value: 0.749970552930525 name: Spearman Cosine --- # SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2). It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 312 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'}) (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2-L2") # Run inference sentences = [ 'A small group of children are standing in a classroom and one of them has a foot in a trashcan, which also has a rope leading out of it.', 'Some men with jerseys are in a bar, watching a soccer match.', 'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 312] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[1.0000, 0.1114, 0.1211], # [0.1114, 1.0000, 0.3643], # [0.1211, 0.3643, 1.0000]]) ``` ## Evaluation ### Metrics #### Semantic Similarity * Datasets: `sts-dev` and `sts-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | sts-dev | sts-test | |:--------------------|:-----------|:---------| | pearson_cosine | 0.7998 | 0.7475 | | **spearman_cosine** | **0.8136** | **0.75** | #### Knowledge Distillation * Evaluated with [MSEEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator) | Metric | Value | |:-----------------|:-------------| | **negative_mse** | **-50.6792** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 200,000 training samples * Columns: sentence and label * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------| | type | string | list | | details | | | * Samples: | sentence | label | |:---------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------| | A person on a horse jumps over a broken down airplane. | [0.029216572642326355, 0.7606895565986633, -2.639708995819092, 1.5909428596496582, 1.2897400856018066, ...] | | Children smiling and waving at camera | [-2.8437485694885254, 2.944169282913208, 7.142611503601074, 5.286141395568848, -2.155975341796875, ...] | | A boy is jumping on skateboard in the middle of a red bridge. | [2.7921977043151855, 3.262112617492676, 1.0734096765518188, 6.316248893737793, -1.0134869813919067, ...] | * Loss: [MSELoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) ### Evaluation Dataset #### Unnamed Dataset * Size: 10,000 evaluation samples * Columns: sentence and label * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------| | type | string | list | | details | | | * Samples: | sentence | label | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------| | Two women are embracing while holding to go packages. | [-6.028911590576172, -2.3896284103393555, 2.2538001537323, -2.044457197189331, 1.669250726699829, ...] | | Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. | [-1.9341195821762085, 0.6948365569114685, 2.5149948596954346, 3.9593544006347656, -3.2706212997436523, ...] | | A man selling donuts to a customer during a world exhibition event held in the city of Angeles | [3.196415662765503, 3.1836068630218506, -0.26187384128570557, -2.4298267364501953, 3.2045652866363525, ...] | * Loss: [MSELoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 0.0001 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {}
### Training Logs | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | negative_mse | sts-test_spearman_cosine | |:--------:|:--------:|:-------------:|:---------------:|:-----------------------:|:------------:|:------------------------:| | 0.032 | 100 | 16.5376 | - | - | - | - | | 0.064 | 200 | 15.6489 | - | - | - | - | | 0.096 | 300 | 14.5959 | - | - | - | - | | 0.128 | 400 | 13.7611 | - | - | - | - | | 0.16 | 500 | 13.2159 | 13.9388 | 0.7559 | -63.5636 | - | | 0.192 | 600 | 12.8215 | - | - | - | - | | 0.224 | 700 | 12.4917 | - | - | - | - | | 0.256 | 800 | 12.2748 | - | - | - | - | | 0.288 | 900 | 12.009 | - | - | - | - | | 0.32 | 1000 | 11.7972 | 13.1279 | 0.7896 | -57.2613 | - | | 0.352 | 1100 | 11.6088 | - | - | - | - | | 0.384 | 1200 | 11.459 | - | - | - | - | | 0.416 | 1300 | 11.3065 | - | - | - | - | | 0.448 | 1400 | 11.1917 | - | - | - | - | | 0.48 | 1500 | 11.1288 | 12.6637 | 0.8021 | -53.8425 | - | | 0.512 | 1600 | 10.9378 | - | - | - | - | | 0.544 | 1700 | 10.8963 | - | - | - | - | | 0.576 | 1800 | 10.8034 | - | - | - | - | | 0.608 | 1900 | 10.7124 | - | - | - | - | | 0.64 | 2000 | 10.6427 | 12.4148 | 0.8092 | -52.1864 | - | | 0.672 | 2100 | 10.6062 | - | - | - | - | | 0.704 | 2200 | 10.5628 | - | - | - | - | | 0.736 | 2300 | 10.5185 | - | - | - | - | | 0.768 | 2400 | 10.4376 | - | - | - | - | | 0.8 | 2500 | 10.3779 | 12.2752 | 0.8115 | -51.3012 | - | | 0.832 | 2600 | 10.3268 | - | - | - | - | | 0.864 | 2700 | 10.323 | - | - | - | - | | 0.896 | 2800 | 10.2904 | - | - | - | - | | 0.928 | 2900 | 10.2949 | - | - | - | - | | **0.96** | **3000** | **10.2858** | **12.187** | **0.8136** | **-50.6792** | **-** | | 0.992 | 3100 | 10.245 | - | - | - | - | | -1 | -1 | - | - | - | - | 0.7500 | * The bold row denotes the saved checkpoint. ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.011 kWh - **Carbon Emitted**: 0.003 kg of CO2 - **Hours Used**: 0.061 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 5.2.0.dev0 - Transformers: 4.53.3 - PyTorch: 2.8.0+cu128 - Accelerate: 1.6.0 - Datasets: 4.2.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MSELoss ```bibtex @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } ```