--- language: - en tags: - sentence-transformers - cross-encoder - reranker - generated_from_trainer - dataset_size:39770704 - loss:MarginMSELoss base_model: jhu-clsp/ettin-encoder-17m datasets: - sentence-transformers/msmarco pipeline_tag: text-ranking library_name: sentence-transformers metrics: - map - mrr@10 - ndcg@10 co2_eq_emissions: emissions: 1604.894253932601 energy_consumed: 4.347723620604183 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: AMD EPYC 7R13 Processor ram_total_size: 1999.9855194091797 hours_used: 1.576 hardware_used: 8 x NVIDIA H100 80GB HBM3 model-index: - name: CrossEncoder based on jhu-clsp/ettin-encoder-17m results: - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoMSMARCO R100 type: NanoMSMARCO_R100 metrics: - type: map value: 0.6239 name: Map - type: mrr@10 value: 0.6129 name: Mrr@10 - type: ndcg@10 value: 0.6576 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoNFCorpus R100 type: NanoNFCorpus_R100 metrics: - type: map value: 0.3478 name: Map - type: mrr@10 value: 0.5462 name: Mrr@10 - type: ndcg@10 value: 0.3996 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoNQ R100 type: NanoNQ_R100 metrics: - type: map value: 0.6263 name: Map - type: mrr@10 value: 0.6337 name: Mrr@10 - type: ndcg@10 value: 0.672 name: Ndcg@10 - task: type: cross-encoder-nano-beir name: Cross Encoder Nano BEIR dataset: name: NanoBEIR R100 mean type: NanoBEIR_R100_mean metrics: - type: map value: 0.5327 name: Map - type: mrr@10 value: 0.5976 name: Mrr@10 - type: ndcg@10 value: 0.5764 name: Ndcg@10 --- # CrossEncoder based on jhu-clsp/ettin-encoder-17m This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) - **Maximum Sequence Length:** 512 tokens - **Number of Output Labels:** 1 label - **Training Dataset:** - [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("tomaarsen/ms-marco-ettin-17m-reranker") # Get scores for pairs of texts pairs = [ ['the name olmec means', 'The name Olmec comes from the Nahuatl word for the Olmecs: Å\x8clmÄ\x93catl [oË\x90lË\x88meË\x90kat͡ɬ] (singular) or Å\x8clmÄ\x93cah [oË\x90lË\x88meË\x90kaÊ\x94] (plural). This word is composed of the two words Å\x8dlli [Ë\x88oË\x90lË\x90i] , meaning rubber, and mÄ\x93catl [Ë\x88meË\x90kat͡ɬ] , meaning people, so the word means rubber people.hey lived in the tropical lowlands of south-central Mexico, in the present-day states of Veracruz and Tabasco. It has been speculated that Olmec derive in part from neighboring Mokaya and/or Mixeâ\x80\x93Zoque.'], ['what causes hissing in the ears', 'The following medical conditions are some of the possible causes of Hissing in ears. There are likely to be other possible causes, so ask your doctor about your symptoms. 1 Acute ear infection. Chronic ear infection.'], ['multiple birth sibling definition', 'multiple birth(Noun) a birth in which more than one baby are born. Multiple birth. A multiple birth occurs when more than one fetus is carried to term in a single pregnancy. Different names for multiple births are used, depending on the number of offspring.'], ['what cause fluid build up on the knee', 'No: The joint should not have any appreciable fluid in it normally. Fluid can be there from many reasons. Arthritis can cause fluid. Also surgery can cause some bleeding in the knee which can cause the fluid to build up. The fluid makes the joint stiff and makes it hard to get a good quad function. ...Read more.'], ['how long is the wait list for kidney transplant', 'At the center of this is the simple fact that organ transplantation is built upon altruism and public trust. Gift of Life works hard to ensure that this trust is maintained, through its commitment both to the donor family as well as to those on the waiting list. Average Median Wait Time to Transplant. Kidney â\x80\x93 5 years.'], ] scores = model.predict(pairs) print(scores.shape) # (5,) # Or rank different texts based on similarity to a single text ranks = model.rank( 'the name olmec means', [ 'The name Olmec comes from the Nahuatl word for the Olmecs: Å\x8clmÄ\x93catl [oË\x90lË\x88meË\x90kat͡ɬ] (singular) or Å\x8clmÄ\x93cah [oË\x90lË\x88meË\x90kaÊ\x94] (plural). This word is composed of the two words Å\x8dlli [Ë\x88oË\x90lË\x90i] , meaning rubber, and mÄ\x93catl [Ë\x88meË\x90kat͡ɬ] , meaning people, so the word means rubber people.hey lived in the tropical lowlands of south-central Mexico, in the present-day states of Veracruz and Tabasco. It has been speculated that Olmec derive in part from neighboring Mokaya and/or Mixeâ\x80\x93Zoque.', 'The following medical conditions are some of the possible causes of Hissing in ears. There are likely to be other possible causes, so ask your doctor about your symptoms. 1 Acute ear infection. Chronic ear infection.', 'multiple birth(Noun) a birth in which more than one baby are born. Multiple birth. A multiple birth occurs when more than one fetus is carried to term in a single pregnancy. Different names for multiple births are used, depending on the number of offspring.', 'No: The joint should not have any appreciable fluid in it normally. Fluid can be there from many reasons. Arthritis can cause fluid. Also surgery can cause some bleeding in the knee which can cause the fluid to build up. The fluid makes the joint stiff and makes it hard to get a good quad function. ...Read more.', 'At the center of this is the simple fact that organ transplantation is built upon altruism and public trust. Gift of Life works hard to ensure that this trust is maintained, through its commitment both to the donor family as well as to those on the waiting list. Average Median Wait Time to Transplant. Kidney â\x80\x93 5 years.', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` ## Evaluation ### Metrics #### Cross Encoder Reranking * Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100` * Evaluated with [CrossEncoderRerankingEvaluator](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters: ```json { "at_k": 10, "always_rerank_positives": true } ``` | Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 | |:------------|:---------------------|:---------------------|:---------------------| | map | 0.6239 (+0.1343) | 0.3478 (+0.0868) | 0.6263 (+0.2067) | | mrr@10 | 0.6129 (+0.1354) | 0.5462 (+0.0464) | 0.6337 (+0.2070) | | **ndcg@10** | **0.6576 (+0.1172)** | **0.3996 (+0.0745)** | **0.6720 (+0.1714)** | #### Cross Encoder Nano BEIR * Dataset: `NanoBEIR_R100_mean` * Evaluated with [CrossEncoderNanoBEIREvaluator](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true } ``` | Metric | Value | |:------------|:---------------------| | map | 0.5327 (+0.1426) | | mrr@10 | 0.5976 (+0.1296) | | **ndcg@10** | **0.5764 (+0.1210)** | ## Training Details ### Training Dataset #### msmarco * Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83) * Size: 39,770,704 training samples * Columns: query_id, positive_id, negative_id, and score * Approximate statistics based on the first 1000 samples: | | query_id | positive_id | negative_id | score | |:--------|:----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------| | type | string | string | string | float | | details | | | | | * Samples: | query_id | positive_id | negative_id | score | |:------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------| | how do you attach a sanding screen to a floor buffer | Lay the buffer on the floor so you can get underneath the housing and hook the screening brush to the central spindle. Center a sanding screen on the brush and push on it so it stays in place, then right the buffer and allow the housing to rest on the floor. Plug in the machine and grasp the handles with both hands before you turn it on. | The random orbital sander used an offset drive bearing that causes the pad to also move in an elliptical pattern. These pad movements are used in combination, randomly of course to help reduce the swirls that a non-random sheet sander might leave behind. Mechanics aside, a mojor difference is in the sanding medium. Most random orbital sanders use sanding disks, typically in a 5-inch diameter. They are attached to the sander's pad using hook & loop connections. The sanding disks have holes in them that match-up with the dust collection holes in the sander's pad. | 15.936323801676433 | | define method overriding | Method overriding is when a child class redefines the same method as a parent class, with the same parameters. For example, the standard Java class java.util.LinkedHashSet e…xtends java.util.HashSet. The method add() is overridden in LinkedHashSet. | In spite of its limitations, the MET concept provides a convenient method to describe the functional capacity or exercise tolerance of an individual as determined from progressive exercise testing and to define a repertoire of physical activities in which a person may participate safely, without exceeding a prescribed intensity level. PMID: 2204507 | 19.40437730153402 | | toxic effects of constipation | by Jane Kriese. The colon is the part of the large intestine extending from the cecum to the rectum. And the most common sign of having a toxic colon is a condition called constipation. An accumulation of waste food byproducts in the colon can lead to constipation, toxic build up, weight gain and low energy. | In Summary. Commonly reported side effects of tizanidine include: bradycardia, dizziness, drowsiness, hypotension, asthenia, fatigue, and xerostomia. Other side effects include: constipation, and increased liver enzymes. See below for a comprehensive list of adverse effects. | 7.669035658240318 | * Loss: [MarginMSELoss](https://sbert.net/docs/package_reference/cross_encoder/losses.html#marginmseloss) with these parameters: ```json { "activation_fn": "torch.nn.modules.linear.Identity" } ``` ### Evaluation Dataset #### msmarco * Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83) * Size: 10,000 evaluation samples * Columns: query_id, positive_id, negative_id, and score * Approximate statistics based on the first 1000 samples: | | query_id | positive_id | negative_id | score | |:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------| | type | string | string | string | float | | details | | | | | * Samples: | query_id | positive_id | negative_id | score | |:-----------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------| | the name olmec means | The name Olmec comes from the Nahuatl word for the Olmecs: Ōlmēcatl [oːlˈmeːkat͡ɬ] (singular) or Ōlmēcah [oːlˈmeːkaʔ] (plural). This word is composed of the two words ōlli [ˈoːlːi] , meaning rubber, and mēcatl [ˈmeːkat͡ɬ] , meaning people, so the word means rubber people.hey lived in the tropical lowlands of south-central Mexico, in the present-day states of Veracruz and Tabasco. It has been speculated that Olmec derive in part from neighboring Mokaya and/or Mixe–Zoque. | Jai: Glory to, Joy, Hail. Guru; Gu - means darkness, and Ru - means a remover. So, Guru means a remover of darkness. Deva; means a shining one and is the source of the English word, Divine. So when we say Jai Guru Deva we are giving thanks to whoever we feel is the source of knowledge to us. | 19.567786693572998 | | what causes hissing in the ears | The following medical conditions are some of the possible causes of Hissing in ears. There are likely to be other possible causes, so ask your doctor about your symptoms. 1 Acute ear infection. Chronic ear infection. | There are many possible causes of itchy ears. Although the annoyance of itchy ears is not usually found to be serious, the condition is very real no matter the reason for the uncomfortable nuisance. Poking objects like cotton swabs, pencils, and paperclips in the ears to relieve the irritation is a dangerous and non-effective method for relief. | 10.332231203715006 | | multiple birth sibling definition | multiple birth(Noun) a birth in which more than one baby are born. Multiple birth. A multiple birth occurs when more than one fetus is carried to term in a single pregnancy. Different names for multiple births are used, depending on the number of offspring. | From Wikipedia, the free encyclopedia. Not to be confused with Life unworthy of life or Wrongful birth. Wrongful life is the name given to a legal action in which someone is sued by a severely disabled child (through the child's legal guardian) for failing to prevent the child's birth.1 1 Definition.rongful life is the name given to a legal action in which someone is sued by a severely disabled child (through the child's legal guardian) for failing to prevent the child's birth. Contents. | 16.912671327590942 | * Loss: [MarginMSELoss](https://sbert.net/docs/package_reference/cross_encoder/losses.html#marginmseloss) with these parameters: ```json { "activation_fn": "torch.nn.modules.linear.Identity" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `seed`: 12 - `bf16`: True - `load_best_model_at_end`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 12 - `data_seed`: None - `jit_mode_eval`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `parallelism_config`: None - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `project`: huggingface - `trackio_space_id`: trackio - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: no - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: True - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {}
### Training Logs
Click to expand | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 | |:----------:|:---------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:| | -1 | -1 | - | - | 0.0277 (-0.5127) | 0.3408 (+0.0157) | 0.0189 (-0.4817) | 0.1291 (-0.3262) | | 0.0001 | 1 | 203.5639 | - | - | - | - | - | | 0.0020 | 39 | 206.4834 | - | - | - | - | - | | 0.0040 | 78 | 202.3608 | - | - | - | - | - | | 0.0060 | 117 | 197.2066 | - | - | - | - | - | | 0.0080 | 156 | 189.4029 | - | - | - | - | - | | 0.0100 | 195 | 180.9973 | 174.2619 | 0.0536 (-0.4868) | 0.2671 (-0.0580) | 0.0676 (-0.4330) | 0.1294 (-0.3259) | | 0.0121 | 234 | 172.5803 | - | - | - | - | - | | 0.0141 | 273 | 165.2367 | - | - | - | - | - | | 0.0161 | 312 | 157.6653 | - | - | - | - | - | | 0.0181 | 351 | 147.8596 | - | - | - | - | - | | 0.0201 | 390 | 129.2817 | 113.0435 | 0.1823 (-0.3581) | 0.2122 (-0.1128) | 0.2045 (-0.2961) | 0.1997 (-0.2557) | | 0.0221 | 429 | 97.5978 | - | - | - | - | - | | 0.0241 | 468 | 67.4161 | - | - | - | - | - | | 0.0261 | 507 | 52.7053 | - | - | - | - | - | | 0.0281 | 546 | 45.7155 | - | - | - | - | - | | 0.0301 | 585 | 41.9731 | 41.3247 | 0.4712 (-0.0692) | 0.2975 (-0.0275) | 0.4695 (-0.0311) | 0.4127 (-0.0426) | | 0.0321 | 624 | 39.3177 | - | - | - | - | - | | 0.0341 | 663 | 36.7606 | - | - | - | - | - | | 0.0362 | 702 | 34.6954 | - | - | - | - | - | | 0.0382 | 741 | 33.4444 | - | - | - | - | - | | 0.0402 | 780 | 31.8238 | 31.8207 | 0.5084 (-0.0320) | 0.3346 (+0.0096) | 0.5137 (+0.0131) | 0.4522 (-0.0031) | | 0.0422 | 819 | 30.6819 | - | - | - | - | - | | 0.0442 | 858 | 29.4152 | - | - | - | - | - | | 0.0462 | 897 | 28.4563 | - | - | - | - | - | | 0.0482 | 936 | 27.38 | - | - | - | - | - | | 0.0502 | 975 | 26.8008 | 27.3043 | 0.4982 (-0.0422) | 0.3449 (+0.0198) | 0.5200 (+0.0194) | 0.4544 (-0.0010) | | 0.0522 | 1014 | 26.0336 | - | - | - | - | - | | 0.0542 | 1053 | 25.3375 | - | - | - | - | - | | 0.0562 | 1092 | 24.9918 | - | - | - | - | - | | 0.0582 | 1131 | 24.1657 | - | - | - | - | - | | 0.0603 | 1170 | 24.4028 | 24.2684 | 0.5504 (+0.0100) | 0.3672 (+0.0422) | 0.5478 (+0.0471) | 0.4885 (+0.0331) | | 0.0623 | 1209 | 23.3062 | - | - | - | - | - | | 0.0643 | 1248 | 22.7702 | - | - | - | - | - | | 0.0663 | 1287 | 22.4086 | - | - | - | - | - | | 0.0683 | 1326 | 21.9251 | - | - | - | - | - | | 0.0703 | 1365 | 21.9175 | 21.9635 | 0.5852 (+0.0448) | 0.3549 (+0.0299) | 0.5656 (+0.0649) | 0.5019 (+0.0465) | | 0.0723 | 1404 | 20.9865 | - | - | - | - | - | | 0.0743 | 1443 | 20.8581 | - | - | - | - | - | | 0.0763 | 1482 | 20.584 | - | - | - | - | - | | 0.0783 | 1521 | 19.8788 | - | - | - | - | - | | 0.0803 | 1560 | 19.6365 | 19.9889 | 0.5988 (+0.0583) | 0.3533 (+0.0283) | 0.5369 (+0.0362) | 0.4963 (+0.0409) | | 0.0823 | 1599 | 19.2009 | - | - | - | - | - | | 0.0844 | 1638 | 18.9352 | - | - | - | - | - | | 0.0864 | 1677 | 18.7044 | - | - | - | - | - | | 0.0884 | 1716 | 18.3696 | - | - | - | - | - | | 0.0904 | 1755 | 18.223 | 18.6559 | 0.6300 (+0.0896) | 0.3561 (+0.0311) | 0.5659 (+0.0652) | 0.5173 (+0.0620) | | 0.0924 | 1794 | 18.1149 | - | - | - | - | - | | 0.0944 | 1833 | 17.5771 | - | - | - | - | - | | 0.0964 | 1872 | 17.2442 | - | - | - | - | - | | 0.0984 | 1911 | 16.8317 | - | - | - | - | - | | 0.1004 | 1950 | 16.8462 | 17.0786 | 0.6294 (+0.0890) | 0.3552 (+0.0302) | 0.5643 (+0.0637) | 0.5163 (+0.0609) | | 0.1024 | 1989 | 16.5298 | - | - | - | - | - | | 0.1044 | 2028 | 16.4289 | - | - | - | - | - | | 0.1064 | 2067 | 16.0292 | - | - | - | - | - | | 0.1085 | 2106 | 15.8428 | - | - | - | - | - | | 0.1105 | 2145 | 15.7437 | 16.0163 | 0.6269 (+0.0865) | 0.3538 (+0.0287) | 0.5752 (+0.0746) | 0.5186 (+0.0633) | | 0.1125 | 2184 | 15.7076 | - | - | - | - | - | | 0.1145 | 2223 | 15.3865 | - | - | - | - | - | | 0.1165 | 2262 | 15.174 | - | - | - | - | - | | 0.1185 | 2301 | 15.0104 | - | - | - | - | - | | 0.1205 | 2340 | 14.8128 | 14.9314 | 0.6112 (+0.0708) | 0.3625 (+0.0375) | 0.5936 (+0.0929) | 0.5225 (+0.0671) | | 0.1225 | 2379 | 14.407 | - | - | - | - | - | | 0.1245 | 2418 | 14.3549 | - | - | - | - | - | | 0.1265 | 2457 | 14.3104 | - | - | - | - | - | | 0.1285 | 2496 | 14.0911 | - | - | - | - | - | | 0.1305 | 2535 | 13.8692 | 14.5249 | 0.6153 (+0.0749) | 0.3644 (+0.0393) | 0.5976 (+0.0969) | 0.5258 (+0.0704) | | 0.1326 | 2574 | 13.9886 | - | - | - | - | - | | 0.1346 | 2613 | 13.5694 | - | - | - | - | - | | 0.1366 | 2652 | 13.6723 | - | - | - | - | - | | 0.1386 | 2691 | 13.5047 | - | - | - | - | - | | 0.1406 | 2730 | 13.3759 | 13.6388 | 0.6318 (+0.0914) | 0.3578 (+0.0327) | 0.5819 (+0.0812) | 0.5238 (+0.0685) | | 0.1426 | 2769 | 13.042 | - | - | - | - | - | | 0.1446 | 2808 | 13.2039 | - | - | - | - | - | | 0.1466 | 2847 | 12.9865 | - | - | - | - | - | | 0.1486 | 2886 | 13.0293 | - | - | - | - | - | | 0.1506 | 2925 | 12.7206 | 12.6907 | 0.6392 (+0.0988) | 0.3649 (+0.0399) | 0.5919 (+0.0912) | 0.5320 (+0.0766) | | 0.1526 | 2964 | 12.5802 | - | - | - | - | - | | 0.1546 | 3003 | 12.7734 | - | - | - | - | - | | 0.1567 | 3042 | 12.4192 | - | - | - | - | - | | 0.1587 | 3081 | 12.3157 | - | - | - | - | - | | 0.1607 | 3120 | 12.384 | 12.5061 | 0.6382 (+0.0978) | 0.3784 (+0.0533) | 0.5907 (+0.0901) | 0.5358 (+0.0804) | | 0.1627 | 3159 | 12.0562 | - | - | - | - | - | | 0.1647 | 3198 | 12.1539 | - | - | - | - | - | | 0.1667 | 3237 | 12.0754 | - | - | - | - | - | | 0.1687 | 3276 | 11.8814 | - | - | - | - | - | | 0.1707 | 3315 | 11.7829 | 11.9039 | 0.6371 (+0.0967) | 0.3818 (+0.0568) | 0.5998 (+0.0992) | 0.5396 (+0.0842) | | 0.1727 | 3354 | 11.8772 | - | - | - | - | - | | 0.1747 | 3393 | 11.8422 | - | - | - | - | - | | 0.1767 | 3432 | 11.6353 | - | - | - | - | - | | 0.1787 | 3471 | 11.584 | - | - | - | - | - | | 0.1808 | 3510 | 11.443 | 11.8674 | 0.6317 (+0.0912) | 0.3828 (+0.0578) | 0.6080 (+0.1073) | 0.5408 (+0.0854) | | 0.1828 | 3549 | 11.475 | - | - | - | - | - | | 0.1848 | 3588 | 11.1514 | - | - | - | - | - | | 0.1868 | 3627 | 11.3053 | - | - | - | - | - | | 0.1888 | 3666 | 11.0035 | - | - | - | - | - | | 0.1908 | 3705 | 11.1834 | 11.4955 | 0.6333 (+0.0928) | 0.3642 (+0.0392) | 0.6094 (+0.1087) | 0.5356 (+0.0803) | | 0.1928 | 3744 | 10.8977 | - | - | - | - | - | | 0.1948 | 3783 | 10.9302 | - | - | - | - | - | | 0.1968 | 3822 | 10.8946 | - | - | - | - | - | | 0.1988 | 3861 | 10.821 | - | - | - | - | - | | 0.2008 | 3900 | 10.8044 | 11.0295 | 0.6262 (+0.0858) | 0.3784 (+0.0533) | 0.6098 (+0.1091) | 0.5381 (+0.0828) | | 0.2028 | 3939 | 10.6379 | - | - | - | - | - | | 0.2049 | 3978 | 10.6515 | - | - | - | - | - | | 0.2069 | 4017 | 10.4407 | - | - | - | - | - | | 0.2089 | 4056 | 10.4732 | - | - | - | - | - | | 0.2109 | 4095 | 10.3832 | 10.6019 | 0.6286 (+0.0882) | 0.3631 (+0.0381) | 0.6167 (+0.1161) | 0.5362 (+0.0808) | | 0.2129 | 4134 | 10.4307 | - | - | - | - | - | | 0.2149 | 4173 | 10.3511 | - | - | - | - | - | | 0.2169 | 4212 | 10.2797 | - | - | - | - | - | | 0.2189 | 4251 | 10.2157 | - | - | - | - | - | | 0.2209 | 4290 | 10.2122 | 10.3425 | 0.6281 (+0.0877) | 0.3868 (+0.0617) | 0.5901 (+0.0895) | 0.5350 (+0.0796) | | 0.2229 | 4329 | 10.185 | - | - | - | - | - | | 0.2249 | 4368 | 10.163 | - | - | - | - | - | | 0.2269 | 4407 | 10.1477 | - | - | - | - | - | | 0.2290 | 4446 | 9.9438 | - | - | - | - | - | | 0.2310 | 4485 | 9.9041 | 10.1282 | 0.6452 (+0.1048) | 0.3772 (+0.0522) | 0.6136 (+0.1130) | 0.5454 (+0.0900) | | 0.2330 | 4524 | 9.8034 | - | - | - | - | - | | 0.2350 | 4563 | 9.7994 | - | - | - | - | - | | 0.2370 | 4602 | 9.9711 | - | - | - | - | - | | 0.2390 | 4641 | 9.7652 | - | - | - | - | - | | 0.2410 | 4680 | 9.6757 | 9.7409 | 0.6364 (+0.0960) | 0.3800 (+0.0550) | 0.6095 (+0.1088) | 0.5420 (+0.0866) | | 0.2430 | 4719 | 9.558 | - | - | - | - | - | | 0.2450 | 4758 | 9.6791 | - | - | - | - | - | | 0.2470 | 4797 | 9.5759 | - | - | - | - | - | | 0.2490 | 4836 | 9.4958 | - | - | - | - | - | | 0.2510 | 4875 | 9.487 | 9.5897 | 0.6479 (+0.1075) | 0.3734 (+0.0484) | 0.6261 (+0.1255) | 0.5492 (+0.0938) | | 0.2531 | 4914 | 9.4796 | - | - | - | - | - | | 0.2551 | 4953 | 9.3878 | - | - | - | - | - | | 0.2571 | 4992 | 9.3888 | - | - | - | - | - | | 0.2591 | 5031 | 9.2657 | - | - | - | - | - | | 0.2611 | 5070 | 9.1936 | 9.2371 | 0.6296 (+0.0892) | 0.3857 (+0.0607) | 0.6220 (+0.1213) | 0.5458 (+0.0904) | | 0.2631 | 5109 | 9.2403 | - | - | - | - | - | | 0.2651 | 5148 | 9.1963 | - | - | - | - | - | | 0.2671 | 5187 | 9.066 | - | - | - | - | - | | 0.2691 | 5226 | 9.1684 | - | - | - | - | - | | 0.2711 | 5265 | 9.1036 | 9.1932 | 0.6188 (+0.0784) | 0.3803 (+0.0552) | 0.6280 (+0.1274) | 0.5424 (+0.0870) | | 0.2731 | 5304 | 9.0206 | - | - | - | - | - | | 0.2751 | 5343 | 9.2051 | - | - | - | - | - | | 0.2772 | 5382 | 9.1335 | - | - | - | - | - | | 0.2792 | 5421 | 8.9798 | - | - | - | - | - | | 0.2812 | 5460 | 8.9199 | 9.0195 | 0.6210 (+0.0805) | 0.3939 (+0.0688) | 0.6178 (+0.1172) | 0.5442 (+0.0888) | | 0.2832 | 5499 | 8.8599 | - | - | - | - | - | | 0.2852 | 5538 | 8.7977 | - | - | - | - | - | | 0.2872 | 5577 | 8.7378 | - | - | - | - | - | | 0.2892 | 5616 | 8.7338 | - | - | - | - | - | | 0.2912 | 5655 | 8.6566 | 8.8711 | 0.6308 (+0.0904) | 0.3885 (+0.0635) | 0.6194 (+0.1188) | 0.5463 (+0.0909) | | 0.2932 | 5694 | 8.8228 | - | - | - | - | - | | 0.2952 | 5733 | 8.6837 | - | - | - | - | - | | 0.2972 | 5772 | 8.6967 | - | - | - | - | - | | 0.2992 | 5811 | 8.6721 | - | - | - | - | - | | 0.3013 | 5850 | 8.5856 | 8.4996 | 0.6424 (+0.1020) | 0.3820 (+0.0569) | 0.6268 (+0.1261) | 0.5504 (+0.0950) | | 0.3033 | 5889 | 8.5552 | - | - | - | - | - | | 0.3053 | 5928 | 8.4364 | - | - | - | - | - | | 0.3073 | 5967 | 8.4726 | - | - | - | - | - | | 0.3093 | 6006 | 8.6169 | - | - | - | - | - | | 0.3113 | 6045 | 8.4303 | 8.4561 | 0.6142 (+0.0738) | 0.3720 (+0.0470) | 0.6226 (+0.1220) | 0.5363 (+0.0809) | | 0.3133 | 6084 | 8.5336 | - | - | - | - | - | | 0.3153 | 6123 | 8.3723 | - | - | - | - | - | | 0.3173 | 6162 | 8.358 | - | - | - | - | - | | 0.3193 | 6201 | 8.3435 | - | - | - | - | - | | 0.3213 | 6240 | 8.2638 | 8.3670 | 0.6346 (+0.0941) | 0.3838 (+0.0587) | 0.6229 (+0.1222) | 0.5471 (+0.0917) | | 0.3233 | 6279 | 8.2994 | - | - | - | - | - | | 0.3254 | 6318 | 8.1733 | - | - | - | - | - | | 0.3274 | 6357 | 8.2564 | - | - | - | - | - | | 0.3294 | 6396 | 8.212 | - | - | - | - | - | | 0.3314 | 6435 | 8.1111 | 8.3150 | 0.6385 (+0.0981) | 0.3828 (+0.0578) | 0.6353 (+0.1346) | 0.5522 (+0.0968) | | 0.3334 | 6474 | 8.1655 | - | - | - | - | - | | 0.3354 | 6513 | 8.0391 | - | - | - | - | - | | 0.3374 | 6552 | 8.0784 | - | - | - | - | - | | 0.3394 | 6591 | 8.0369 | - | - | - | - | - | | 0.3414 | 6630 | 8.012 | 8.0672 | 0.6191 (+0.0787) | 0.3899 (+0.0648) | 0.6482 (+0.1475) | 0.5524 (+0.0970) | | 0.3434 | 6669 | 7.9809 | - | - | - | - | - | | 0.3454 | 6708 | 8.0001 | - | - | - | - | - | | 0.3474 | 6747 | 8.009 | - | - | - | - | - | | 0.3495 | 6786 | 7.9692 | - | - | - | - | - | | 0.3515 | 6825 | 7.8565 | 7.9072 | 0.6220 (+0.0815) | 0.3866 (+0.0616) | 0.6154 (+0.1147) | 0.5413 (+0.0859) | | 0.3535 | 6864 | 7.9108 | - | - | - | - | - | | 0.3555 | 6903 | 7.7341 | - | - | - | - | - | | 0.3575 | 6942 | 7.8442 | - | - | - | - | - | | 0.3595 | 6981 | 7.912 | - | - | - | - | - | | 0.3615 | 7020 | 7.7133 | 8.0526 | 0.6389 (+0.0985) | 0.3991 (+0.0740) | 0.6408 (+0.1402) | 0.5596 (+0.1042) | | 0.3635 | 7059 | 7.8985 | - | - | - | - | - | | 0.3655 | 7098 | 7.6834 | - | - | - | - | - | | 0.3675 | 7137 | 7.7494 | - | - | - | - | - | | 0.3695 | 7176 | 7.7146 | - | - | - | - | - | | 0.3715 | 7215 | 7.6553 | 7.8366 | 0.6338 (+0.0934) | 0.3992 (+0.0742) | 0.6253 (+0.1247) | 0.5528 (+0.0974) | | 0.3736 | 7254 | 7.612 | - | - | - | - | - | | 0.3756 | 7293 | 7.6707 | - | - | - | - | - | | 0.3776 | 7332 | 7.716 | - | - | - | - | - | | 0.3796 | 7371 | 7.7436 | - | - | - | - | - | | 0.3816 | 7410 | 7.6003 | 7.6881 | 0.6307 (+0.0902) | 0.4029 (+0.0779) | 0.6334 (+0.1327) | 0.5556 (+0.1003) | | 0.3836 | 7449 | 7.5153 | - | - | - | - | - | | 0.3856 | 7488 | 7.5351 | - | - | - | - | - | | 0.3876 | 7527 | 7.5687 | - | - | - | - | - | | 0.3896 | 7566 | 7.5155 | - | - | - | - | - | | 0.3916 | 7605 | 7.4451 | 7.6049 | 0.6321 (+0.0916) | 0.3914 (+0.0664) | 0.6358 (+0.1352) | 0.5531 (+0.0977) | | 0.3936 | 7644 | 7.5113 | - | - | - | - | - | | 0.3956 | 7683 | 7.5135 | - | - | - | - | - | | 0.3977 | 7722 | 7.4258 | - | - | - | - | - | | 0.3997 | 7761 | 7.458 | - | - | - | - | - | | 0.4017 | 7800 | 7.3602 | 7.4536 | 0.6472 (+0.1067) | 0.4034 (+0.0783) | 0.6372 (+0.1365) | 0.5626 (+0.1072) | | 0.4037 | 7839 | 7.4779 | - | - | - | - | - | | 0.4057 | 7878 | 7.4154 | - | - | - | - | - | | 0.4077 | 7917 | 7.2897 | - | - | - | - | - | | 0.4097 | 7956 | 7.3614 | - | - | - | - | - | | 0.4117 | 7995 | 7.2537 | 7.4876 | 0.6298 (+0.0893) | 0.3999 (+0.0749) | 0.6318 (+0.1312) | 0.5538 (+0.0985) | | 0.4137 | 8034 | 7.2474 | - | - | - | - | - | | 0.4157 | 8073 | 7.2166 | - | - | - | - | - | | 0.4177 | 8112 | 7.2344 | - | - | - | - | - | | 0.4197 | 8151 | 7.2647 | - | - | - | - | - | | 0.4218 | 8190 | 7.2618 | 7.4345 | 0.6347 (+0.0943) | 0.4057 (+0.0806) | 0.6289 (+0.1282) | 0.5564 (+0.1010) | | 0.4238 | 8229 | 7.2227 | - | - | - | - | - | | 0.4258 | 8268 | 7.2384 | - | - | - | - | - | | 0.4278 | 8307 | 7.2133 | - | - | - | - | - | | 0.4298 | 8346 | 7.1558 | - | - | - | - | - | | 0.4318 | 8385 | 7.0712 | 7.2899 | 0.6523 (+0.1119) | 0.4027 (+0.0777) | 0.6341 (+0.1335) | 0.5631 (+0.1077) | | 0.4338 | 8424 | 7.1063 | - | - | - | - | - | | 0.4358 | 8463 | 7.0908 | - | - | - | - | - | | 0.4378 | 8502 | 7.1122 | - | - | - | - | - | | 0.4398 | 8541 | 7.1549 | - | - | - | - | - | | 0.4418 | 8580 | 7.0516 | 7.2487 | 0.6553 (+0.1148) | 0.3955 (+0.0705) | 0.6399 (+0.1392) | 0.5635 (+0.1082) | | 0.4438 | 8619 | 7.0792 | - | - | - | - | - | | 0.4459 | 8658 | 7.0351 | - | - | - | - | - | | 0.4479 | 8697 | 7.0315 | - | - | - | - | - | | 0.4499 | 8736 | 6.9912 | - | - | - | - | - | | 0.4519 | 8775 | 7.0102 | 7.0829 | 0.6569 (+0.1165) | 0.3949 (+0.0698) | 0.6534 (+0.1527) | 0.5684 (+0.1130) | | 0.4539 | 8814 | 6.9478 | - | - | - | - | - | | 0.4559 | 8853 | 6.9741 | - | - | - | - | - | | 0.4579 | 8892 | 7.0344 | - | - | - | - | - | | 0.4599 | 8931 | 6.907 | - | - | - | - | - | | 0.4619 | 8970 | 6.9089 | 7.0948 | 0.6369 (+0.0964) | 0.3976 (+0.0725) | 0.6367 (+0.1360) | 0.5570 (+0.1017) | | 0.4639 | 9009 | 6.9295 | - | - | - | - | - | | 0.4659 | 9048 | 6.863 | - | - | - | - | - | | 0.4679 | 9087 | 6.9167 | - | - | - | - | - | | 0.4700 | 9126 | 6.9123 | - | - | - | - | - | | 0.4720 | 9165 | 6.8659 | 6.9749 | 0.6478 (+0.1073) | 0.3977 (+0.0727) | 0.6420 (+0.1414) | 0.5625 (+0.1071) | | 0.4740 | 9204 | 6.8238 | - | - | - | - | - | | 0.4760 | 9243 | 6.7847 | - | - | - | - | - | | 0.4780 | 9282 | 6.7687 | - | - | - | - | - | | 0.4800 | 9321 | 6.8748 | - | - | - | - | - | | 0.4820 | 9360 | 6.7392 | 6.9672 | 0.6469 (+0.1064) | 0.4037 (+0.0787) | 0.6375 (+0.1369) | 0.5627 (+0.1073) | | 0.4840 | 9399 | 6.6911 | - | - | - | - | - | | 0.4860 | 9438 | 6.6688 | - | - | - | - | - | | 0.4880 | 9477 | 6.7891 | - | - | - | - | - | | 0.4900 | 9516 | 6.7704 | - | - | - | - | - | | 0.4920 | 9555 | 6.7022 | 6.8938 | 0.6519 (+0.1115) | 0.4040 (+0.0789) | 0.6484 (+0.1477) | 0.5681 (+0.1127) | | 0.4941 | 9594 | 6.7143 | - | - | - | - | - | | 0.4961 | 9633 | 6.6628 | - | - | - | - | - | | 0.4981 | 9672 | 6.7368 | - | - | - | - | - | | 0.5001 | 9711 | 6.5205 | - | - | - | - | - | | 0.5021 | 9750 | 6.6955 | 6.8142 | 0.6485 (+0.1081) | 0.3968 (+0.0718) | 0.6302 (+0.1296) | 0.5585 (+0.1032) | | 0.5041 | 9789 | 6.6244 | - | - | - | - | - | | 0.5061 | 9828 | 6.6949 | - | - | - | - | - | | 0.5081 | 9867 | 6.5489 | - | - | - | - | - | | 0.5101 | 9906 | 6.6067 | - | - | - | - | - | | 0.5121 | 9945 | 6.5962 | 6.7924 | 0.6574 (+0.1170) | 0.3910 (+0.0660) | 0.6459 (+0.1452) | 0.5648 (+0.1094) | | 0.5141 | 9984 | 6.5248 | - | - | - | - | - | | 0.5161 | 10023 | 6.5204 | - | - | - | - | - | | 0.5182 | 10062 | 6.5291 | - | - | - | - | - | | 0.5202 | 10101 | 6.5512 | - | - | - | - | - | | 0.5222 | 10140 | 6.4731 | 6.7636 | 0.6638 (+0.1234) | 0.3973 (+0.0722) | 0.6433 (+0.1426) | 0.5681 (+0.1128) | | 0.5242 | 10179 | 6.5327 | - | - | - | - | - | | 0.5262 | 10218 | 6.5019 | - | - | - | - | - | | 0.5282 | 10257 | 6.5113 | - | - | - | - | - | | 0.5302 | 10296 | 6.5181 | - | - | - | - | - | | 0.5322 | 10335 | 6.4987 | 6.6856 | 0.6656 (+0.1252) | 0.3946 (+0.0695) | 0.6501 (+0.1494) | 0.5701 (+0.1147) | | 0.5342 | 10374 | 6.4575 | - | - | - | - | - | | 0.5362 | 10413 | 6.4239 | - | - | - | - | - | | 0.5382 | 10452 | 6.4181 | - | - | - | - | - | | 0.5402 | 10491 | 6.3535 | - | - | - | - | - | | 0.5423 | 10530 | 6.4066 | 6.6634 | 0.6482 (+0.1078) | 0.3993 (+0.0743) | 0.6449 (+0.1442) | 0.5641 (+0.1088) | | 0.5443 | 10569 | 6.4005 | - | - | - | - | - | | 0.5463 | 10608 | 6.4521 | - | - | - | - | - | | 0.5483 | 10647 | 6.4178 | - | - | - | - | - | | 0.5503 | 10686 | 6.3495 | - | - | - | - | - | | 0.5523 | 10725 | 6.3246 | 6.6161 | 0.6434 (+0.1030) | 0.3915 (+0.0664) | 0.6426 (+0.1420) | 0.5592 (+0.1038) | | 0.5543 | 10764 | 6.4175 | - | - | - | - | - | | 0.5563 | 10803 | 6.3035 | - | - | - | - | - | | 0.5583 | 10842 | 6.2432 | - | - | - | - | - | | 0.5603 | 10881 | 6.3024 | - | - | - | - | - | | 0.5623 | 10920 | 6.4134 | 6.4813 | 0.6441 (+0.1037) | 0.3936 (+0.0685) | 0.6392 (+0.1386) | 0.5590 (+0.1036) | | 0.5643 | 10959 | 6.2943 | - | - | - | - | - | | 0.5664 | 10998 | 6.2934 | - | - | - | - | - | | 0.5684 | 11037 | 6.3379 | - | - | - | - | - | | 0.5704 | 11076 | 6.2481 | - | - | - | - | - | | 0.5724 | 11115 | 6.256 | 6.4519 | 0.6371 (+0.0967) | 0.3985 (+0.0735) | 0.6343 (+0.1336) | 0.5566 (+0.1013) | | 0.5744 | 11154 | 6.2639 | - | - | - | - | - | | 0.5764 | 11193 | 6.2727 | - | - | - | - | - | | 0.5784 | 11232 | 6.2347 | - | - | - | - | - | | 0.5804 | 11271 | 6.3073 | - | - | - | - | - | | 0.5824 | 11310 | 6.2281 | 6.3956 | 0.6336 (+0.0932) | 0.3973 (+0.0723) | 0.6454 (+0.1448) | 0.5588 (+0.1034) | | 0.5844 | 11349 | 6.0973 | - | - | - | - | - | | 0.5864 | 11388 | 6.282 | - | - | - | - | - | | 0.5884 | 11427 | 6.1308 | - | - | - | - | - | | 0.5905 | 11466 | 6.0991 | - | - | - | - | - | | 0.5925 | 11505 | 6.2648 | 6.3232 | 0.6362 (+0.0958) | 0.3943 (+0.0693) | 0.6527 (+0.1520) | 0.5611 (+0.1057) | | 0.5945 | 11544 | 6.1303 | - | - | - | - | - | | 0.5965 | 11583 | 6.2142 | - | - | - | - | - | | 0.5985 | 11622 | 6.115 | - | - | - | - | - | | 0.6005 | 11661 | 6.1109 | - | - | - | - | - | | 0.6025 | 11700 | 6.2147 | 6.3124 | 0.6190 (+0.0785) | 0.3905 (+0.0654) | 0.6544 (+0.1538) | 0.5546 (+0.0993) | | 0.6045 | 11739 | 6.1101 | - | - | - | - | - | | 0.6065 | 11778 | 6.1246 | - | - | - | - | - | | 0.6085 | 11817 | 6.0777 | - | - | - | - | - | | 0.6105 | 11856 | 6.1565 | - | - | - | - | - | | 0.6125 | 11895 | 5.9654 | 6.2800 | 0.6371 (+0.0967) | 0.3990 (+0.0740) | 0.6534 (+0.1528) | 0.5632 (+0.1078) | | 0.6146 | 11934 | 6.0115 | - | - | - | - | - | | 0.6166 | 11973 | 6.0402 | - | - | - | - | - | | 0.6186 | 12012 | 6.1312 | - | - | - | - | - | | 0.6206 | 12051 | 6.0977 | - | - | - | - | - | | 0.6226 | 12090 | 6.1147 | 6.2629 | 0.6438 (+0.1033) | 0.3997 (+0.0746) | 0.6595 (+0.1589) | 0.5676 (+0.1123) | | 0.6246 | 12129 | 6.0727 | - | - | - | - | - | | 0.6266 | 12168 | 6.0468 | - | - | - | - | - | | 0.6286 | 12207 | 6.022 | - | - | - | - | - | | 0.6306 | 12246 | 5.9995 | - | - | - | - | - | | 0.6326 | 12285 | 6.0553 | 6.2714 | 0.6511 (+0.1107) | 0.3965 (+0.0714) | 0.6490 (+0.1483) | 0.5655 (+0.1102) | | 0.6346 | 12324 | 6.0713 | - | - | - | - | - | | 0.6366 | 12363 | 5.9443 | - | - | - | - | - | | 0.6387 | 12402 | 6.0045 | - | - | - | - | - | | 0.6407 | 12441 | 5.9835 | - | - | - | - | - | | 0.6427 | 12480 | 5.9936 | 6.1741 | 0.6330 (+0.0926) | 0.3993 (+0.0743) | 0.6452 (+0.1446) | 0.5592 (+0.1038) | | 0.6447 | 12519 | 5.9637 | - | - | - | - | - | | 0.6467 | 12558 | 5.9407 | - | - | - | - | - | | 0.6487 | 12597 | 5.8556 | - | - | - | - | - | | 0.6507 | 12636 | 6.0084 | - | - | - | - | - | | 0.6527 | 12675 | 6.0038 | 6.1379 | 0.6555 (+0.1150) | 0.3981 (+0.0731) | 0.6501 (+0.1495) | 0.5679 (+0.1125) | | 0.6547 | 12714 | 5.8648 | - | - | - | - | - | | 0.6567 | 12753 | 5.9154 | - | - | - | - | - | | 0.6587 | 12792 | 5.9591 | - | - | - | - | - | | 0.6607 | 12831 | 5.9369 | - | - | - | - | - | | 0.6628 | 12870 | 5.8238 | 6.1443 | 0.6430 (+0.1026) | 0.3945 (+0.0694) | 0.6621 (+0.1614) | 0.5665 (+0.1111) | | 0.6648 | 12909 | 5.8622 | - | - | - | - | - | | 0.6668 | 12948 | 5.9296 | - | - | - | - | - | | 0.6688 | 12987 | 5.8676 | - | - | - | - | - | | 0.6708 | 13026 | 5.8811 | - | - | - | - | - | | 0.6728 | 13065 | 5.9176 | 6.0863 | 0.6422 (+0.1018) | 0.3931 (+0.0681) | 0.6651 (+0.1644) | 0.5668 (+0.1114) | | 0.6748 | 13104 | 5.8536 | - | - | - | - | - | | 0.6768 | 13143 | 5.8865 | - | - | - | - | - | | 0.6788 | 13182 | 5.7893 | - | - | - | - | - | | 0.6808 | 13221 | 5.8791 | - | - | - | - | - | | 0.6828 | 13260 | 5.8686 | 6.0588 | 0.6384 (+0.0979) | 0.3980 (+0.0730) | 0.6555 (+0.1548) | 0.5640 (+0.1086) | | 0.6848 | 13299 | 5.8052 | - | - | - | - | - | | 0.6869 | 13338 | 5.8452 | - | - | - | - | - | | 0.6889 | 13377 | 5.8033 | - | - | - | - | - | | 0.6909 | 13416 | 5.7734 | - | - | - | - | - | | 0.6929 | 13455 | 5.7619 | 5.9937 | 0.6524 (+0.1120) | 0.3965 (+0.0714) | 0.6505 (+0.1498) | 0.5664 (+0.1111) | | 0.6949 | 13494 | 5.7637 | - | - | - | - | - | | 0.6969 | 13533 | 5.7513 | - | - | - | - | - | | 0.6989 | 13572 | 5.8172 | - | - | - | - | - | | 0.7009 | 13611 | 5.8323 | - | - | - | - | - | | 0.7029 | 13650 | 5.76 | 5.9823 | 0.6451 (+0.1047) | 0.4061 (+0.0810) | 0.6428 (+0.1421) | 0.5646 (+0.1093) | | 0.7049 | 13689 | 5.7541 | - | - | - | - | - | | 0.7069 | 13728 | 5.7465 | - | - | - | - | - | | 0.7089 | 13767 | 5.8207 | - | - | - | - | - | | 0.7110 | 13806 | 5.7531 | - | - | - | - | - | | 0.7130 | 13845 | 5.7436 | 5.9584 | 0.6417 (+0.1012) | 0.4021 (+0.0771) | 0.6469 (+0.1462) | 0.5636 (+0.1082) | | 0.7150 | 13884 | 5.6921 | - | - | - | - | - | | 0.7170 | 13923 | 5.6492 | - | - | - | - | - | | 0.7190 | 13962 | 5.7005 | - | - | - | - | - | | 0.7210 | 14001 | 5.7808 | - | - | - | - | - | | 0.7230 | 14040 | 5.7058 | 5.9436 | 0.6403 (+0.0998) | 0.3904 (+0.0654) | 0.6602 (+0.1595) | 0.5636 (+0.1083) | | 0.7250 | 14079 | 5.7288 | - | - | - | - | - | | 0.7270 | 14118 | 5.6235 | - | - | - | - | - | | 0.7290 | 14157 | 5.6438 | - | - | - | - | - | | 0.7310 | 14196 | 5.6733 | - | - | - | - | - | | 0.7330 | 14235 | 5.7588 | 5.9466 | 0.6583 (+0.1179) | 0.3944 (+0.0693) | 0.6479 (+0.1473) | 0.5669 (+0.1115) | | 0.7351 | 14274 | 5.6172 | - | - | - | - | - | | 0.7371 | 14313 | 5.649 | - | - | - | - | - | | 0.7391 | 14352 | 5.7198 | - | - | - | - | - | | 0.7411 | 14391 | 5.627 | - | - | - | - | - | | 0.7431 | 14430 | 5.6958 | 5.8615 | 0.6463 (+0.1058) | 0.3905 (+0.0654) | 0.6619 (+0.1613) | 0.5662 (+0.1109) | | 0.7451 | 14469 | 5.6216 | - | - | - | - | - | | 0.7471 | 14508 | 5.5954 | - | - | - | - | - | | 0.7491 | 14547 | 5.5794 | - | - | - | - | - | | 0.7511 | 14586 | 5.6821 | - | - | - | - | - | | 0.7531 | 14625 | 5.5987 | 5.8702 | 0.6436 (+0.1032) | 0.3936 (+0.0685) | 0.6563 (+0.1557) | 0.5645 (+0.1091) | | 0.7551 | 14664 | 5.6134 | - | - | - | - | - | | 0.7571 | 14703 | 5.6476 | - | - | - | - | - | | 0.7592 | 14742 | 5.679 | - | - | - | - | - | | 0.7612 | 14781 | 5.6292 | - | - | - | - | - | | 0.7632 | 14820 | 5.6129 | 5.8149 | 0.6454 (+0.1049) | 0.3949 (+0.0699) | 0.6553 (+0.1546) | 0.5652 (+0.1098) | | 0.7652 | 14859 | 5.5883 | - | - | - | - | - | | 0.7672 | 14898 | 5.6431 | - | - | - | - | - | | 0.7692 | 14937 | 5.5464 | - | - | - | - | - | | 0.7712 | 14976 | 5.6273 | - | - | - | - | - | | **0.7732** | **15015** | **5.6428** | **5.8067** | **0.6576 (+0.1172)** | **0.3996 (+0.0745)** | **0.6720 (+0.1714)** | **0.5764 (+0.1210)** | | 0.7752 | 15054 | 5.4733 | - | - | - | - | - | | 0.7772 | 15093 | 5.5618 | - | - | - | - | - | | 0.7792 | 15132 | 5.5804 | - | - | - | - | - | | 0.7812 | 15171 | 5.5858 | - | - | - | - | - | | 0.7833 | 15210 | 5.4994 | 5.7438 | 0.6424 (+0.1019) | 0.3973 (+0.0722) | 0.6573 (+0.1566) | 0.5656 (+0.1103) | | 0.7853 | 15249 | 5.5405 | - | - | - | - | - | | 0.7873 | 15288 | 5.5032 | - | - | - | - | - | | 0.7893 | 15327 | 5.5755 | - | - | - | - | - | | 0.7913 | 15366 | 5.4816 | - | - | - | - | - | | 0.7933 | 15405 | 5.4922 | 5.7130 | 0.6523 (+0.1118) | 0.3851 (+0.0601) | 0.6633 (+0.1626) | 0.5669 (+0.1115) | | 0.7953 | 15444 | 5.5049 | - | - | - | - | - | | 0.7973 | 15483 | 5.5061 | - | - | - | - | - | | 0.7993 | 15522 | 5.5243 | - | - | - | - | - | | 0.8013 | 15561 | 5.4995 | - | - | - | - | - | | 0.8033 | 15600 | 5.5222 | 5.7124 | 0.6440 (+0.1035) | 0.3981 (+0.0731) | 0.6695 (+0.1689) | 0.5705 (+0.1152) | | 0.8053 | 15639 | 5.5646 | - | - | - | - | - | | 0.8074 | 15678 | 5.5963 | - | - | - | - | - | | 0.8094 | 15717 | 5.5167 | - | - | - | - | - | | 0.8114 | 15756 | 5.5645 | - | - | - | - | - | | 0.8134 | 15795 | 5.4805 | 5.7093 | 0.6571 (+0.1167) | 0.3948 (+0.0697) | 0.6566 (+0.1560) | 0.5695 (+0.1141) | | 0.8154 | 15834 | 5.5332 | - | - | - | - | - | | 0.8174 | 15873 | 5.4952 | - | - | - | - | - | | 0.8194 | 15912 | 5.5312 | - | - | - | - | - | | 0.8214 | 15951 | 5.5023 | - | - | - | - | - | | 0.8234 | 15990 | 5.3999 | 5.6825 | 0.6641 (+0.1237) | 0.3984 (+0.0734) | 0.6575 (+0.1569) | 0.5733 (+0.1180) | | 0.8254 | 16029 | 5.4961 | - | - | - | - | - | | 0.8274 | 16068 | 5.5271 | - | - | - | - | - | | 0.8294 | 16107 | 5.4806 | - | - | - | - | - | | 0.8315 | 16146 | 5.4955 | - | - | - | - | - | | 0.8335 | 16185 | 5.4969 | 5.6419 | 0.6576 (+0.1172) | 0.4014 (+0.0763) | 0.6578 (+0.1572) | 0.5723 (+0.1169) | | 0.8355 | 16224 | 5.4633 | - | - | - | - | - | | 0.8375 | 16263 | 5.4822 | - | - | - | - | - | | 0.8395 | 16302 | 5.4476 | - | - | - | - | - | | 0.8415 | 16341 | 5.4727 | - | - | - | - | - | | 0.8435 | 16380 | 5.4001 | 5.5943 | 0.6513 (+0.1109) | 0.4057 (+0.0806) | 0.6477 (+0.1471) | 0.5682 (+0.1129) | | 0.8455 | 16419 | 5.4684 | - | - | - | - | - | | 0.8475 | 16458 | 5.4463 | - | - | - | - | - | | 0.8495 | 16497 | 5.4672 | - | - | - | - | - | | 0.8515 | 16536 | 5.4415 | - | - | - | - | - | | 0.8535 | 16575 | 5.4633 | 5.6234 | 0.6645 (+0.1241) | 0.3943 (+0.0693) | 0.6620 (+0.1614) | 0.5736 (+0.1183) | | 0.8556 | 16614 | 5.3845 | - | - | - | - | - | | 0.8576 | 16653 | 5.4805 | - | - | - | - | - | | 0.8596 | 16692 | 5.4391 | - | - | - | - | - | | 0.8616 | 16731 | 5.382 | - | - | - | - | - | | 0.8636 | 16770 | 5.4113 | 5.5914 | 0.6645 (+0.1241) | 0.3938 (+0.0688) | 0.6598 (+0.1591) | 0.5727 (+0.1173) | | 0.8656 | 16809 | 5.4142 | - | - | - | - | - | | 0.8676 | 16848 | 5.3805 | - | - | - | - | - | | 0.8696 | 16887 | 5.4068 | - | - | - | - | - | | 0.8716 | 16926 | 5.392 | - | - | - | - | - | | 0.8736 | 16965 | 5.4121 | 5.5925 | 0.6592 (+0.1188) | 0.4029 (+0.0779) | 0.6473 (+0.1466) | 0.5698 (+0.1144) | | 0.8756 | 17004 | 5.3969 | - | - | - | - | - | | 0.8776 | 17043 | 5.4349 | - | - | - | - | - | | 0.8797 | 17082 | 5.3231 | - | - | - | - | - | | 0.8817 | 17121 | 5.3217 | - | - | - | - | - | | 0.8837 | 17160 | 5.3942 | 5.5690 | 0.6619 (+0.1215) | 0.3941 (+0.0690) | 0.6603 (+0.1597) | 0.5721 (+0.1167) | | 0.8857 | 17199 | 5.3824 | - | - | - | - | - | | 0.8877 | 17238 | 5.3817 | - | - | - | - | - | | 0.8897 | 17277 | 5.3159 | - | - | - | - | - | | 0.8917 | 17316 | 5.3866 | - | - | - | - | - | | 0.8937 | 17355 | 5.3396 | 5.5496 | 0.6645 (+0.1241) | 0.3996 (+0.0745) | 0.6525 (+0.1518) | 0.5722 (+0.1168) | | 0.8957 | 17394 | 5.4085 | - | - | - | - | - | | 0.8977 | 17433 | 5.3788 | - | - | - | - | - | | 0.8997 | 17472 | 5.3739 | - | - | - | - | - | | 0.9017 | 17511 | 5.3322 | - | - | - | - | - | | 0.9038 | 17550 | 5.3472 | 5.5212 | 0.6513 (+0.1109) | 0.4041 (+0.0791) | 0.6607 (+0.1601) | 0.5721 (+0.1167) | | 0.9058 | 17589 | 5.3451 | - | - | - | - | - | | 0.9078 | 17628 | 5.3297 | - | - | - | - | - | | 0.9098 | 17667 | 5.3158 | - | - | - | - | - | | 0.9118 | 17706 | 5.363 | - | - | - | - | - | | 0.9138 | 17745 | 5.3346 | 5.5014 | 0.6650 (+0.1245) | 0.3989 (+0.0739) | 0.6602 (+0.1595) | 0.5747 (+0.1193) | | 0.9158 | 17784 | 5.3702 | - | - | - | - | - | | 0.9178 | 17823 | 5.4226 | - | - | - | - | - | | 0.9198 | 17862 | 5.3099 | - | - | - | - | - | | 0.9218 | 17901 | 5.3468 | - | - | - | - | - | | 0.9238 | 17940 | 5.3903 | 5.5093 | 0.6523 (+0.1118) | 0.4000 (+0.0750) | 0.6624 (+0.1618) | 0.5716 (+0.1162) | | 0.9258 | 17979 | 5.3288 | - | - | - | - | - | | 0.9279 | 18018 | 5.3464 | - | - | - | - | - | | 0.9299 | 18057 | 5.2696 | - | - | - | - | - | | 0.9319 | 18096 | 5.3532 | - | - | - | - | - | | 0.9339 | 18135 | 5.3093 | 5.4815 | 0.6518 (+0.1114) | 0.4021 (+0.0771) | 0.6689 (+0.1683) | 0.5743 (+0.1189) | | 0.9359 | 18174 | 5.3378 | - | - | - | - | - | | 0.9379 | 18213 | 5.3576 | - | - | - | - | - | | 0.9399 | 18252 | 5.3102 | - | - | - | - | - | | 0.9419 | 18291 | 5.3322 | - | - | - | - | - | | 0.9439 | 18330 | 5.3015 | 5.4963 | 0.6645 (+0.1241) | 0.3980 (+0.0729) | 0.6573 (+0.1566) | 0.5732 (+0.1179) | | 0.9459 | 18369 | 5.2332 | - | - | - | - | - | | 0.9479 | 18408 | 5.2934 | - | - | - | - | - | | 0.9499 | 18447 | 5.3187 | - | - | - | - | - | | 0.9520 | 18486 | 5.2961 | - | - | - | - | - | | 0.9540 | 18525 | 5.2884 | 5.4628 | 0.6654 (+0.1250) | 0.3982 (+0.0731) | 0.6628 (+0.1621) | 0.5754 (+0.1201) | | 0.9560 | 18564 | 5.277 | - | - | - | - | - | | 0.9580 | 18603 | 5.3364 | - | - | - | - | - | | 0.9600 | 18642 | 5.2839 | - | - | - | - | - | | 0.9620 | 18681 | 5.2503 | - | - | - | - | - | | 0.9640 | 18720 | 5.2547 | 5.4463 | 0.6596 (+0.1192) | 0.3981 (+0.0730) | 0.6642 (+0.1635) | 0.5740 (+0.1186) | | 0.9660 | 18759 | 5.2803 | - | - | - | - | - | | 0.9680 | 18798 | 5.3167 | - | - | - | - | - | | 0.9700 | 18837 | 5.2781 | - | - | - | - | - | | 0.9720 | 18876 | 5.2809 | - | - | - | - | - | | 0.9740 | 18915 | 5.2917 | 5.4579 | 0.6596 (+0.1192) | 0.4000 (+0.0749) | 0.6689 (+0.1683) | 0.5762 (+0.1208) | | 0.9761 | 18954 | 5.2893 | - | - | - | - | - | | 0.9781 | 18993 | 5.3301 | - | - | - | - | - | | 0.9801 | 19032 | 5.2753 | - | - | - | - | - | | 0.9821 | 19071 | 5.2079 | - | - | - | - | - | | 0.9841 | 19110 | 5.2672 | 5.4520 | 0.6592 (+0.1188) | 0.3989 (+0.0738) | 0.6689 (+0.1683) | 0.5757 (+0.1203) | | 0.9861 | 19149 | 5.268 | - | - | - | - | - | | 0.9881 | 19188 | 5.224 | - | - | - | - | - | | 0.9901 | 19227 | 5.3047 | - | - | - | - | - | | 0.9921 | 19266 | 5.2771 | - | - | - | - | - | | 0.9941 | 19305 | 5.233 | 5.4545 | 0.6592 (+0.1188) | 0.4003 (+0.0752) | 0.6689 (+0.1683) | 0.5761 (+0.1208) | | 0.9961 | 19344 | 5.2459 | - | - | - | - | - | | 0.9981 | 19383 | 5.3069 | - | - | - | - | - | | -1 | -1 | - | - | 0.6576 (+0.1172) | 0.3996 (+0.0745) | 0.6720 (+0.1714) | 0.5764 (+0.1210) | * The bold row denotes the saved checkpoint.
### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 4.348 kWh - **Carbon Emitted**: 1.605 kg of CO2 - **Hours Used**: 1.576 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 8 x NVIDIA H100 80GB HBM3 - **CPU Model**: AMD EPYC 7R13 Processor - **RAM Size**: 1999.99 GB ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 5.1.2 - Transformers: 4.57.1 - PyTorch: 2.9.1+cu126 - Accelerate: 1.12.0 - Datasets: 4.4.1 - Tokenizers: 0.22.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MarginMSELoss ```bibtex @misc{hofstätter2021improving, title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation}, author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury}, year={2021}, eprint={2010.02666}, archivePrefix={arXiv}, primaryClass={cs.IR} } ```