Safetensors
qwen3_moe
Mixture of Experts
frankenmoe
Merge
mergekit
lazymergekit
Qwen/Qwen3-0.6B
suayptalha/Qwen3-0.6B-Code-Expert
suayptalha/Qwen3-0.6B-Medical-Expert
suayptalha/Qwen3-0.6B-Math-Expert
suayptalha/Qwen3-0.6B-Diagnose
suayptalha/Qwen3-0.6B-Psychological-Support
suayptalha/Qwen3-0.6B-IF-Expert
90dkn0ws/OpenR1-Distill-0.6B
Qwen3-Neurotic-Experts-8x0.6b-v2
Qwen3-Neurotic-Experts-8x0.6b-v2 is a Mixture of Experts (MoE) made with the following models using LazyMergekit:
- Qwen/Qwen3-0.6B
- suayptalha/Qwen3-0.6B-Code-Expert
- suayptalha/Qwen3-0.6B-Medical-Expert
- suayptalha/Qwen3-0.6B-Math-Expert
- suayptalha/Qwen3-0.6B-Diagnose
- suayptalha/Qwen3-0.6B-Psychological-Support
- suayptalha/Qwen3-0.6B-IF-Expert
- 90dkn0ws/OpenR1-Distill-0.6B
π§© Configuration
base_model: Qwen/Qwen3-0.6B
dtype: bfloat16
gate_mode: hidden
experts_per_token: 2
experts:
- source_model: Qwen/Qwen3-0.6B
# General Chat / multilingual expert
positive_prompts:
- "chat"
- "conversation"
- "dialogue"
- "personal assistant"
- "friendly discussion"
- "social interaction"
- "answer in the same language as the user"
negative_prompts:
- "code"
- "mathematics"
- "medical"
- "diagnosis"
- "psychology"
- "follow instructions"
- source_model: suayptalha/Qwen3-0.6B-Code-Expert
positive_prompts:
- "code"
- "programming"
- "python"
- "javascript"
- "c++"
- "debug"
- "write a function"
- "implement algorithm"
negative_prompts:
- "chat"
- "medical"
- "psychology"
- "diagnosis"
- "math"
- source_model: suayptalha/Qwen3-0.6B-Medical-Expert
positive_prompts:
- "medical"
- "health"
- "treatment"
- "pharmacology"
- "clinical advice"
- "anatomy"
- "physiology"
negative_prompts:
- "chat"
- "code"
- "mathematics"
- "psychology"
- "instructions"
- source_model: suayptalha/Qwen3-0.6B-Math-Expert
positive_prompts:
- "math"
- "mathematics"
- "algebra"
- "calculus"
- "geometry"
- "equation"
- "proof"
- "derivation"
negative_prompts:
- "chat"
- "code"
- "medical"
- "psychology"
- "diagnosis"
- source_model: suayptalha/Qwen3-0.6B-Diagnose
positive_prompts:
- "diagnose"
- "symptoms"
- "differential diagnosis"
- "case study"
- "clinical reasoning"
negative_prompts:
- "chat"
- "code"
- "mathematics"
- "psychology"
- source_model: suayptalha/Qwen3-0.6B-Psychological-Support
positive_prompts:
- "mental health"
- "emotional support"
- "therapy"
- "stress management"
- "coping strategies"
- "depression"
- "anxiety"
negative_prompts:
- "chat"
- "code"
- "mathematics"
- "medical"
- "diagnosis"
- source_model: suayptalha/Qwen3-0.6B-IF-Expert
positive_prompts:
- "follow instructions"
- "step by step"
- "task execution"
- "procedures"
- "guidelines"
- "do the following"
negative_prompts:
- "chat"
- "code"
- "medical"
- "psychology"
- "mathematics"
- source_model: 90dkn0ws/OpenR1-Distill-0.6B
positive_prompts:
- "reasoning"
- "logic"
- "think carefully"
- "analyze"
- "explain why"
- "step by step reasoning"
negative_prompts:
- "chat"
- "code"
- "medical"
- "psychology"
- "instructions"
- "mathematics"
π» Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "ItsVictorTube/Qwen3-Neurotic-Experts-8x0.6b-v2"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 28
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for ItsVictorTube/Qwen3-Neurotic-Experts-8x0.6b-v2
Merge model
this model