Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| Positive |
|
| Negative |
|
| Label | Accuracy |
|---|---|
| all | 0.9043 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Tarssio/modelo_setfit_politica_BA")
# Run inference
preds = model("👏👏👏")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 19.4813 | 313 |
| Label | Training Sample Count |
|---|---|
| Negative | 175 |
| Positive | 199 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0011 | 1 | 0.3616 | - |
| 0.0535 | 50 | 0.3129 | - |
| 0.1070 | 100 | 0.2912 | - |
| 0.1604 | 150 | 0.191 | - |
| 0.2139 | 200 | 0.0907 | - |
| 0.2674 | 250 | 0.0086 | - |
| 0.3209 | 300 | 0.0042 | - |
| 0.3743 | 350 | 0.0161 | - |
| 0.4278 | 400 | 0.0007 | - |
| 0.4813 | 450 | 0.0403 | - |
| 0.5348 | 500 | 0.0055 | - |
| 0.5882 | 550 | 0.0057 | - |
| 0.6417 | 600 | 0.0002 | - |
| 0.6952 | 650 | 0.0002 | - |
| 0.7487 | 700 | 0.0 | - |
| 0.8021 | 750 | 0.0026 | - |
| 0.8556 | 800 | 0.0002 | - |
| 0.9091 | 850 | 0.0002 | - |
| 0.9626 | 900 | 0.0004 | - |
| 1.0 | 935 | - | 0.1724 |
| 1.0160 | 950 | 0.0001 | - |
| 1.0695 | 1000 | 0.0006 | - |
| 1.1230 | 1050 | 0.0001 | - |
| 1.1765 | 1100 | 0.0008 | - |
| 1.2299 | 1150 | 0.0002 | - |
| 1.2834 | 1200 | 0.0001 | - |
| 1.3369 | 1250 | 0.0002 | - |
| 1.3904 | 1300 | 0.0002 | - |
| 1.4439 | 1350 | 0.0002 | - |
| 1.4973 | 1400 | 0.0002 | - |
| 1.5508 | 1450 | 0.0 | - |
| 1.6043 | 1500 | 0.0002 | - |
| 1.6578 | 1550 | 0.2178 | - |
| 1.7112 | 1600 | 0.0002 | - |
| 1.7647 | 1650 | 0.0001 | - |
| 1.8182 | 1700 | 0.0001 | - |
| 1.8717 | 1750 | 0.0003 | - |
| 1.9251 | 1800 | 0.0359 | - |
| 1.9786 | 1850 | 0.0001 | - |
| 2.0 | 1870 | - | 0.1601 |
| 2.0321 | 1900 | 0.0001 | - |
| 2.0856 | 1950 | 0.0002 | - |
| 2.1390 | 2000 | 0.0001 | - |
| 2.1925 | 2050 | 0.0001 | - |
| 2.2460 | 2100 | 0.0002 | - |
| 2.2995 | 2150 | 0.0002 | - |
| 2.3529 | 2200 | 0.0003 | - |
| 2.4064 | 2250 | 0.0001 | - |
| 2.4599 | 2300 | 0.0002 | - |
| 2.5134 | 2350 | 0.0001 | - |
| 2.5668 | 2400 | 0.0 | - |
| 2.6203 | 2450 | 0.0001 | - |
| 2.6738 | 2500 | 0.0 | - |
| 2.7273 | 2550 | 0.0001 | - |
| 2.7807 | 2600 | 0.0001 | - |
| 2.8342 | 2650 | 0.0 | - |
| 2.8877 | 2700 | 0.0 | - |
| 2.9412 | 2750 | 0.0 | - |
| 2.9947 | 2800 | 0.0001 | - |
| 3.0 | 2805 | - | 0.1568 |
| 3.0481 | 2850 | 0.0001 | - |
| 3.1016 | 2900 | 0.0001 | - |
| 3.1551 | 2950 | 0.0001 | - |
| 3.2086 | 3000 | 0.0001 | - |
| 3.2620 | 3050 | 0.0001 | - |
| 3.3155 | 3100 | 0.0045 | - |
| 3.3690 | 3150 | 0.0 | - |
| 3.4225 | 3200 | 0.0001 | - |
| 3.4759 | 3250 | 0.0002 | - |
| 3.5294 | 3300 | 0.0 | - |
| 3.5829 | 3350 | 0.0002 | - |
| 3.6364 | 3400 | 0.0 | - |
| 3.6898 | 3450 | 0.0 | - |
| 3.7433 | 3500 | 0.0002 | - |
| 3.7968 | 3550 | 0.0 | - |
| 3.8503 | 3600 | 0.0 | - |
| 3.9037 | 3650 | 0.0005 | - |
| 3.9572 | 3700 | 0.0001 | - |
| 4.0 | 3740 | - | 0.1574 |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}