GigaChat3-10B-A1.8B

ะŸั€ะตะดัั‚ะฐะฒะปัะตะผ GigaChat3-10B-A1.8B โ€” ะดะธะฐะปะพะณะพะฒัƒัŽ ะผะพะดะตะปัŒ ัะตะผะตะนัั‚ะฒะฐ GigaChat. ะœะพะดะตะปัŒ ะพัะฝะพะฒะฐะฝะฐ ะฝะฐ ะฐั€ั…ะธั‚ะตะบั‚ัƒั€ะต Mixture-of-Experts (MoE) ั 10B ะพะฑั‰ะธั… ะธ 1.8B ะฐะบั‚ะธะฒะฝั‹ั… ะฟะฐั€ะฐะผะตั‚ั€ะพะฒ. ะั€ั…ะธั‚ะตะบั‚ัƒั€ะฐ ะฒะบะปัŽั‡ะฐะตั‚ Multi-head Latent Attention (MLA) ะธ Multi-Token Prediction (MTP), ะทะฐ ัั‡ะตั‚ ั‡ะตะณะพ ะผะพะดะตะปัŒ ะพะฟั‚ะธะผะธะทะธั€ะพะฒะฐะฝะฐ ะดะปั ะฒั‹ัะพะบะพะน ะฟั€ะพะฟัƒัะบะฝะพะน ัะฟะพัะพะฑะฝะพัั‚ะธ (throughput) ะฟั€ะธ ะธะฝั„ะตั€ะตะฝัะต. ะœะพะดะตะปัŒ ะพะฑัƒั‡ะตะฝะฐ ะฟะพะฒะตั€ั… ะฝะฐัˆะตะน ะฑะฐะทะพะฒะพะน ะฒะตั€ัะธะธ (GigaChat3-10B-A1.8B-base) ั ะฟะพะผะพั‰ัŒัŽ ะฒั‹ัะพะบะพะบะฐั‡ะตัั‚ะฒะตะฝะฝั‹ั… SFT-ะดะฐะฝะฝั‹ั…. ะ”ะฐะฝะฝะฐั ะฒะตั€ัะธั ะฟั€ะตะดะฝะฐะทะฝะฐั‡ะตะฝะฐ ะดะปั ะฒั‹ัะพะบะพะฟั€ะพะธะทะฒะพะดะธั‚ะตะปัŒะฝะพะณะพ ะธะฝั„ะตั€ะตะฝัะฐ ะฒ fp8, ะผะพะดะตะปัŒ ะฒ bf16 โ€” GigaChat3-10B-A1.8B. ะ‘ะพะปัŒัˆะต ะฟะพะดั€ะพะฑะฝะพัั‚ะตะน ะฒ ั…ะฐะฑั€ ัั‚ะฐั‚ัŒะต.

ะั€ั…ะธั‚ะตะบั‚ัƒั€ะฐ ะผะพะดะตะปะธ

GigaChat3-10B-A1.8B ะธัะฟะพะปัŒะทัƒะตั‚ ะบะฐัั‚ะพะผะฝัƒัŽ MoE-ะฐั€ั…ะธั‚ะตะบั‚ัƒั€ัƒ:

Multi-head Latent Attention (MLA)

ะ’ะผะตัั‚ะพ ัั‚ะฐะฝะดะฐั€ั‚ะฝะพะณะพ Multi-head Attention ะผะพะดะตะปัŒ ะธัะฟะพะปัŒะทัƒะตั‚ MLA. MLA ะพะฑะตัะฟะตั‡ะธะฒะฐะตั‚ ัั„ั„ะตะบั‚ะธะฒะฝั‹ะน ะธะฝั„ะตั€ะตะฝั ะทะฐ ัั‡ะตั‚ ัะถะฐั‚ะธั Key-Value (KV) ะบััˆะฐ ะฒ ะปะฐั‚ะตะฝั‚ะฝั‹ะน ะฒะตะบั‚ะพั€, ั‡ั‚ะพ ะทะฝะฐั‡ะธั‚ะตะปัŒะฝะพ ัะฝะธะถะฐะตั‚ ั‚ั€ะตะฑะพะฒะฐะฝะธั ะบ ะฟะฐะผัั‚ะธ ะธ ัƒัะบะพั€ัะตั‚ ะพะฑั€ะฐะฑะพั‚ะบัƒ.

Multi-Token Prediction (MTP)

ะœะพะดะตะปัŒ ะพะฑัƒั‡ะตะฝะฐ ั ะธัะฟะพะปัŒะทะพะฒะฐะฝะธะตะผ ะทะฐะดะฐั‡ะธ Multi-Token Prediction (MTP). ะญั‚ะพ ะฟะพะทะฒะพะปัะตั‚ ะผะพะดะตะปะธ ะฟั€ะตะดัะบะฐะทั‹ะฒะฐั‚ัŒ ะฝะตัะบะพะปัŒะบะพ ั‚ะพะบะตะฝะพะฒ ะทะฐ ะพะดะธะฝ ะฟั€ะพั…ะพะด, ั‡ั‚ะพ ัƒัะบะพั€ัะตั‚ ะณะตะฝะตั€ะฐั†ะธัŽ ะดะพ 40% ั ะฟะพะผะพั‰ัŒัŽ ั‚ะตั…ะฝะธะบ ัะฟะตะบัƒะปัั‚ะธะฒะฝะพะน/ะฟะฐั€ะฐะปะปะตะปัŒะฝะพะน ะณะตะฝะตั€ะฐั†ะธะธ.

ะ”ะฐะฝะฝั‹ะต ะดะปั ะพะฑัƒั‡ะตะฝะธั

ะœะพะดะตะปัŒ ะพะฑัƒั‡ะตะฝะฐ ะฝะฐ 20ะข ั‚ะพะบะตะฝะพะฒ. ะœั‹ ะดะพะฑะฐะฒะธะปะธ 10 ัะทั‹ะบะพะฒ โ€” ะพั‚ ะบะธั‚ะฐะนัะบะพะณะพ ะธ ะฐั€ะฐะฑัะบะพะณะพ ะดะพ ัƒะทะฑะตะบัะบะพะณะพ ะธ ะบะฐะทะฐั…ัะบะพะณะพ, ะฐ ั‚ะฐะบะถะต ั€ะฐััˆะธั€ะธะปะธ ะฝะฐะฑะพั€ ะธัั‚ะพั‡ะฝะธะบะพะฒ: ะบะฝะธะณะธ, ะฐะบะฐะดะตะผะธั‡ะตัะบะธะต ะดะฐะฝะฝั‹ะต, ะดะฐั‚ะฐัะตั‚ั‹ ะฟะพ ะบะพะดัƒ ะธ ะผะฐั‚ะตะผะฐั‚ะธะบะต. ะ’ัะต ะดะฐะฝะฝั‹ะต ะฟั€ะพั…ะพะดัั‚ ะดะตะดัƒะฟะปะธะบะฐั†ะธัŽ, ัะทั‹ะบะพะฒัƒัŽ ั„ะธะปัŒั‚ั€ะฐั†ะธัŽ ะธ ะฐะฒั‚ะพะผะฐั‚ะธั‡ะตัะบะธะต ะฟั€ะพะฒะตั€ะบะธ ะบะฐั‡ะตัั‚ะฒะฐ ะฟั€ะธ ะฟะพะผะพั‰ะธ ัะฒั€ะธัั‚ะธะบ ะธ ะบะปะฐััะธั„ะธะบะฐั‚ะพั€ะพะฒ. ะšะปัŽั‡ะตะฒะพะน ะฒะบะปะฐะด ะฒ ะบะฐั‡ะตัั‚ะฒะพ ะฒะฝะตัะปะฐ ัะธะฝั‚ะตั‚ะธะบะฐ: ะผั‹ ัะณะตะฝะตั€ะธั€ะพะฒะฐะปะธ ะพะบะพะปะพ 5,5 ั‚ั€ะธะปะปะธะพะฝะพะฒ ั‚ะพะบะตะฝะพะฒ ัะธะฝั‚ะตั‚ะธั‡ะตัะบะธั… ะดะฐะฝะฝั‹ั…. ะ’ ะบะพั€ะฟัƒั ะฒั…ะพะดัั‚ ะฒะพะฟั€ะพัั‹-ะพั‚ะฒะตั‚ั‹ ะบ ั‚ะตะบัั‚ะฐะผ, ั†ะตะฟะพั‡ะบะธ reverse-prompt ะดะปั ัั‚ั€ัƒะบั‚ัƒั€ะธั€ะพะฒะฐะฝะธั ะดะฐะฝะฝั‹ั…, LLM-ะทะฐะผะตั‚ะบะธ ั ะบะพะผะผะตะฝั‚ะฐั€ะธัะผะธ ะพั‚ ะผะพะดะตะปะธ ะฒะฝัƒั‚ั€ะธ ั‚ะตะบัั‚ะพะฒ, ะผะธะปะปะธะพะฝั‹ ัะธะฝั‚ะตั‚ะธั‡ะตัะบะธั… ะทะฐะดะฐั‡ ั ั€ะตัˆะตะฝะธัะผะธ ะฟะพ ะผะฐั‚ะตะผะฐั‚ะธะบะต ะธ ะพะปะธะผะฟะธะฐะดะฝะพะผัƒ ะฟั€ะพะณั€ะฐะผะผะธั€ะพะฒะฐะฝะธัŽ (ั ัะธะฝั‚ะตั‚ะธั‡ะตัะบะธะผะธ ั‚ะตัั‚ะฐะผะธ) ะฝะฐ ะพัะฝะพะฒะต PromptCot.

ะ˜ะฝั„ะตั€ะตะฝั

ะžะดะฝะพ ะธะท ะบะปัŽั‡ะตะฒั‹ั… ะฟั€ะตะธะผัƒั‰ะตัั‚ะฒ GigaChat3-10B-A1.8B โ€” ัะบะพั€ะพัั‚ัŒ ะธะฝั„ะตั€ะตะฝัะฐ. ะœะพะดะตะปัŒ (ะพัะพะฑะตะฝะฝะพ ะฒ ั€ะตะถะธะผะต MTP) ะดะตะผะพะฝัั‚ั€ะธั€ัƒะตั‚ ะฟั€ะพะฟัƒัะบะฝัƒัŽ ัะฟะพัะพะฑะฝะพัั‚ัŒ, ัะพะฟะพัั‚ะฐะฒะธะผัƒัŽ ั ะฟั€ะพะฟัƒัะบะฝะพะน ัะฟะพัะพะฑะฝะพัั‚ัŒัŽ ะทะฝะฐั‡ะธั‚ะตะปัŒะฝะพ ะผะตะฝัŒัˆะธั… denseโ€‘ะผะพะดะตะปะตะน. ะœั‹ ะธะทะผะตั€ัะปะธ ั ะฟะพะผะพั‰ัŒัŽ vLLM v0.11.0, ะฝะฐ ั‚ะธะฟะต bfloat16 c batch_size=1. ะกัั‹ะปะบะฐ ะฝะฐ ะบะพะด.

ะœะพะดะตะปัŒ request_throughput output_throughput total_token_throughput mean_ttft_ms
Qwen3-1.7B 1.689 357.308 726.093 11.824
mtp-GigaChat3-10B-A1.8B-base 1.533 333.620 678.894 26.345
GigaChat3-10B-A1.8B-base 1.077 234.363 476.912 31.053
Qwen3-4B 0.978 206.849 420.341 14.947
Qwen3-8B 0.664 140.432 285.375 16.663
YandexGPT-5-Lite-8B-pretrain 0.641 147.305 300.269 16.711

ะ‘ะตะฝั‡ะผะฐั€ะบะธ

ะฅะพั‚ั ะผะพะดะตะปัŒ ะธะผะตะตั‚ 10 ะผะธะปะปะธะฐั€ะดะพะฒ ะฟะฐั€ะฐะผะตั‚ั€ะพะฒ, ะตั‘ ะฟั€ัะผั‹ะต ะฐะฝะฐะปะพะณะธ โ€” ะผะพะดะตะปะธ ั€ะฐะทะผะตั€ะพะผ 3โ€“4 ะผะธะปะปะธะฐั€ะดะฐ ะฟะฐั€ะฐะผะตั‚ั€ะพะฒ. ะžะดะฝะฐะบะพ ะฑะปะฐะณะพะดะฐั€ั ะฒั‹ัะพะบะพะน ัะบะพั€ะพัั‚ะธ ะณะตะฝะตั€ะฐั†ะธะธ ะผั‹ ั‚ะฐะบะถะต ัั€ะฐะฒะฝะธะฒะฐะตะผ ะตั‘ ั ะตั‰ั‘ ะฑะพะปะตะต ะบะพะผะฟะฐะบั‚ะฝั‹ะผะธ ะผะพะดะตะปัะผะธ.

ะœะตั‚ั€ะธะบะฐ GigaChat 3 Lightning Qwen3-1.7B-Instruct Qwen3-4B-Instruct-2507 SmolLM3
MMLU_RU_FIVE_SHOT 0.6833 0.4876 0.5972 0.4998
RUBQ_ZERO_SHOT 0.6516 0.2557 0.3170 0.6363
MMLU_PRO_EN_FIVE_SHOT 0.6061 0.410 0.6849 0.5013
MMLU_EN_FIVE_SHOT 0.7403 0.60 0.7080 0.5992
BBH_THREE_SHOT 0.4525 0.3317 0.7165 0.4161
SuperGPQA 0.2731 0.2092 0.3745 0.2459
MATH_500_FOUR_SHOT 0.7000 0.7520 0.8880 0.8020
GPQA_COT_ZERO_SHOT 0.3502 0.2651 0.5370 0.3704
LiveCodeBench_ZERO_SHOT 0.2031 0.0794 0.3046 0.1656
HUMAN_EVAL_PLUS_ZERO_SHOT 0.6951 0.6280 0.8780 0.7012

ะšะฐะบ ะฟั€ะพะฒะตั€ะธั‚ัŒ ะผะตั‚ั€ะธะบะธ ะผะพะดะตะปะธ

# lm-eval[api]==0.4.9.1
# sglang[all]==0.5.5
# ะธะปะธ 
# vllm==0.11.2

export HF_ALLOW_CODE_EVAL=1

# sglang server up

# 10B
python -m sglang.launch_server --model-path <path_to_model> --host 127.0.0.1 --port 30000 --dtype auto --mem-fraction-static 0.88 --trust-remote-code --allow-auto-truncate --speculative-algorithm EAGLE --speculative-num-steps 1 --speculative-eagle-topk 1 --speculative-num-draft-tokens 2

# mmlu pro check
python -m lm_eval --model sglang-generate --output_path <path_to_model> --batch_size 16 --model_args base_url=http://127.0.0.1:30000/generate,num_concurrent=16,tokenized_requests=True,max_length=131072,tokenizer=<path_to_model> --trust_remote_code --confirm_run_unsafe_code --num_fewshot 5 --tasks mmlu_pro

ะŸั€ะธะผะตั€ ะธัะฟะพะปัŒะทะพะฒะฐะฝะธั (Quickstart)

1. transformers

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "ai-sage/GigaChat3-10B-A1.8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)

messages = [
    {"role": "user", "content": "ะ”ะพะบะฐะถะธ ั‚ะตะพั€ะตะผัƒ ะพ ะฝะตะฟะพะดะฒะธะถะฝะพะน ั‚ะพั‡ะบะต"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=1000)

result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=False)
print(result)

2. vLLM

ะ—ะฐะฟัƒัะบ ัะตั€ะฒะตั€ะฐ

# VLLM DeepGemm conflicts with our hidden dim size.
# Fix: Disable it via env var (VLLM_USE_DEEP_GEMM=0).
VLLM_USE_DEEP_GEMM=0 vllm serve ai-sage/GigaChat3-10B-A1.8B \
  --dtype "auto" \
  --speculative-config '{"method": "mtp", "num_speculative_tokens": 1, "disable_padded_drafter_batch": false}'

ะŸั€ะธะผะตั€ ะทะฐะฟั€ะพัะฐ

curl http://localhost:8000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "ai-sage/GigaChat3-10B-A1.8B",
    "messages": [
      {
        "role": "user",
        "content": "ะ”ะพะบะฐะถะธ ั‚ะตะพั€ะตะผัƒ ะพ ะฝะตะฟะพะดะฒะธะถะฝะพะน ั‚ะพั‡ะบะต"
      }
    ],
    "max_tokens": 400,
    "temperature": 0
  }'

3. SGLang

ะ—ะฐะฟัƒัะบ ัะตั€ะฒะตั€ะฐ

python -m sglang.launch_server \
  --model-path ai-sage/GigaChat3-10B-A1.8B \
  --host 0.0.0.0 \
  --port 30000 \
  --dtype auto \
  --mem-fraction-static 0.88 \
  --speculative-algorithm EAGLE \
  --speculative-num-steps 1 \
  --speculative-eagle-topk 1 \
  --speculative-num-draft-tokens 2

ะŸั€ะธะผะตั€ ะทะฐะฟั€ะพัะฐ

curl http://localhost:30000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "ai-sage/GigaChat3-10B-A1.8B",
    "messages": [
      {
        "role": "user",
        "content": "ะ”ะพะบะฐะถะธ ั‚ะตะพั€ะตะผัƒ ะพ ะฝะตะฟะพะดะฒะธะถะฝะพะน ั‚ะพั‡ะบะต"
      }
    ],
    "max_tokens": 1000,
    "temperature": 0
  }'

Function call

1. transformers

Click for a dropdown
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import json
import re
REGEX_FUNCTION_CALL_V3 = re.compile(r"function call<\|role_sep\|>\n(.*)$", re.DOTALL)
REGEX_CONTENT_PATTERN = re.compile(r"^(.*?)<\|message_sep\|>", re.DOTALL)
def parse_function_and_content(completion_str: str):
    """
    Using the regexes the user provided, attempt to extract function call and content.
    Returns (function_call_str_or_None, content_str_or_None)
    """

    function_call = None
    content = None

    m_func = REGEX_FUNCTION_CALL_V3.search(completion_str)
    if m_func:
        try:
            function_call = json.loads(m_func.group(1))
            if isinstance(function_call, dict) and "name" in function_call and "arguments" in function_call:
                if not isinstance(function_call["arguments"], dict):
                    function_call = None
            else:
                function_call = None
        except json.JSONDecodeError:
            function_call = None

            # will return raw string in failed attempt of function calling
            return function_call, completion_str

    m_content = REGEX_CONTENT_PATTERN.search(completion_str)
    if m_content:
        content = m_content.group(1)
    else:
        # as a fallback, everything before the first message_sep marker if present
        if "<|message_sep|>" in completion_str:
            content = completion_str.split("<|message_sep|>")[0]
        else:
            content = completion_str

    return function_call, content

model_name = "ai-sage/GigaChat3-10B-A1.8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
tools = [
    {
      "type": "function",
      "function": {
        "name": "get_weather",
        "description": "ะŸะพะปัƒั‡ะธั‚ัŒ ะธะฝั„ะพั€ะผะฐั†ะธัŽ ะพ ั‚ะตะบัƒั‰ะตะน ะฟะพะณะพะดะต ะฒ ัƒะบะฐะทะฐะฝะฝะพะผ ะณะพั€ะพะดะต.",
        "parameters": {
          "type": "object",
          "properties": {
            "city": {
              "type": "string",
              "description": "ะะฐะทะฒะฐะฝะธะต ะณะพั€ะพะดะฐ (ะฝะฐะฟั€ะธะผะตั€, ะœะพัะบะฒะฐ, ะšะฐะทะฐะฝัŒ)."
            }
          },
          "required": ["city"]
        }
      }
    }
]
messages = [
    {"role": "user", "content": "ะšะฐะบะฐั ัะตะนั‡ะฐั ะฟะพะณะพะดะฐ ะฒ ะœะพัะบะฒะต?"}
]
input_tensor = tokenizer.apply_chat_template(messages, tools=tools, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=1000)

result = parse_function_and_content(tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=False))[0]
print(result)

2. vLLM

ะกะพะฑะตั€ะธั‚ะต dev ะฒะตั€ัะธัŽ, ะบะพะผะผะธั‚>=21bb323)

ะ—ะฐะฟัƒัะบ ัะตั€ะฒะตั€ะฐ

# VLLM DeepGemm conflicts with our hidden dim size.
# Fix: Disable it via env var (VLLM_USE_DEEP_GEMM=0).
VLLM_USE_DEEP_GEMM=0 vllm serve ai-sage/GigaChat3-10B-A1.8B \
  --dtype "auto" \
  --speculative-config '{"method": "mtp", "num_speculative_tokens": 1, "disable_padded_drafter_batch": false}' \
  --enable-auto-tool-choice \
  --tool-call-parser gigachat3

ะŸั€ะธะผะตั€ ะทะฐะฟั€ะพัะฐ

curl http://localhost:8000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
  "model": "ai-sage/GigaChat3-10B-A1.8B",
  "temperature": 0,
  "messages": [
    {
      "role": "user",
      "content": "ะšะฐะบะฐั ัะตะนั‡ะฐั ะฟะพะณะพะดะฐ ะฒ ะœะพัะบะฒะต?"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_weather",
        "description": "ะŸะพะปัƒั‡ะธั‚ัŒ ะธะฝั„ะพั€ะผะฐั†ะธัŽ ะพ ั‚ะตะบัƒั‰ะตะน ะฟะพะณะพะดะต ะฒ ัƒะบะฐะทะฐะฝะฝะพะผ ะณะพั€ะพะดะต.",
        "parameters": {
          "type": "object",
          "properties": {
            "city": {
              "type": "string",
              "description": "ะะฐะทะฒะฐะฝะธะต ะณะพั€ะพะดะฐ (ะฝะฐะฟั€ะธะผะตั€, ะœะพัะบะฒะฐ, ะšะฐะทะฐะฝัŒ)."
            }
          },
          "required": ["city"]
        }
      }
    }
  ]
}'

3. SGLang

ะกะพะฑะตั€ะธั‚ะต dev ะฒะตั€ัะธัŽ ะฝะฐ ะดะฐะฝะฝะพะน ะฒะตั‚ะบะต - https://github.com/sgl-project/sglang/pull/14765.

ะ—ะฐะฟัƒัะบ ัะตั€ะฒะตั€ะฐ

python -m sglang.launch_server \
  --model-path ai-sage/GigaChat3-10B-A1.8B \
  --host 0.0.0.0 \
  --port 30000 \
  --dtype auto \
  --mem-fraction-static 0.88 \
  --speculative-algorithm EAGLE \
  --speculative-num-steps 1 \
  --speculative-eagle-topk 1 \
  --speculative-num-draft-tokens 2
  --tool-call-parser gigachat3

ะŸั€ะธะผะตั€ ะทะฐะฟั€ะพัะฐ

curl http://localhost:30000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
  "model": "ai-sage/GigaChat3-10B-A1.8B",
  "temperature": 0,
  "messages": [
    {
      "role": "user",
      "content": "ะšะฐะบะฐั ัะตะนั‡ะฐั ะฟะพะณะพะดะฐ ะฒ ะœะพัะบะฒะต?"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_weather",
        "description": "ะŸะพะปัƒั‡ะธั‚ัŒ ะธะฝั„ะพั€ะผะฐั†ะธัŽ ะพ ั‚ะตะบัƒั‰ะตะน ะฟะพะณะพะดะต ะฒ ัƒะบะฐะทะฐะฝะฝะพะผ ะณะพั€ะพะดะต.",
        "parameters": {
          "type": "object",
          "properties": {
            "city": {
              "type": "string",
              "description": "ะะฐะทะฒะฐะฝะธะต ะณะพั€ะพะดะฐ (ะฝะฐะฟั€ะธะผะตั€, ะœะพัะบะฒะฐ, ะšะฐะทะฐะฝัŒ)."
            }
          },
          "required": ["city"]
        }
      }
    }
  ]
}'
Downloads last month
8,174
Safetensors
Model size
11B params
Tensor type
F32
ยท
BF16
ยท
F8_E4M3
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ 1 Ask for provider support

Model tree for ai-sage/GigaChat3-10B-A1.8B

Quantized
(13)
this model
Quantizations
8 models

Spaces using ai-sage/GigaChat3-10B-A1.8B 2

Collection including ai-sage/GigaChat3-10B-A1.8B