swin-brain-abnormalities-classification-fold1
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1102
- Accuracy: 0.9607
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 0.9214 | 0.9714 | 17 | 0.7237 | 0.7249 |
| 0.5441 | 2.0 | 35 | 0.3606 | 0.8523 |
| 0.3592 | 2.9714 | 52 | 0.2474 | 0.9024 |
| 0.2732 | 4.0 | 70 | 0.2265 | 0.9173 |
| 0.2283 | 4.9714 | 87 | 0.1731 | 0.9404 |
| 0.1865 | 6.0 | 105 | 0.1808 | 0.9309 |
| 0.185 | 6.9714 | 122 | 0.1703 | 0.9201 |
| 0.1597 | 8.0 | 140 | 0.1262 | 0.9485 |
| 0.1545 | 8.9714 | 157 | 0.1375 | 0.9472 |
| 0.1237 | 10.0 | 175 | 0.1133 | 0.9580 |
| 0.1165 | 10.9714 | 192 | 0.1299 | 0.9512 |
| 0.1086 | 12.0 | 210 | 0.1118 | 0.9634 |
| 0.1129 | 12.9714 | 227 | 0.1101 | 0.9580 |
| 0.0898 | 14.0 | 245 | 0.1089 | 0.9607 |
| 0.0811 | 14.5714 | 255 | 0.1102 | 0.9607 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- -
Model tree for bombshelll/swin-brain-abnormalities-classification-fold1
Base model
microsoft/swin-tiny-patch4-window7-224