ast-finetuned-gtzan
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.3410
- Accuracy: 0.9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 25
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.627 | 1.0 | 50 | 0.8714 | 0.795 |
| 0.4145 | 2.0 | 100 | 0.5660 | 0.825 |
| 0.2344 | 3.0 | 150 | 0.4988 | 0.85 |
| 0.1334 | 4.0 | 200 | 0.3726 | 0.87 |
| 0.0341 | 5.0 | 250 | 0.3637 | 0.895 |
| 0.0172 | 6.0 | 300 | 0.4197 | 0.87 |
| 0.0338 | 7.0 | 350 | 0.5035 | 0.87 |
| 0.002 | 8.0 | 400 | 0.5825 | 0.86 |
| 0.001 | 9.0 | 450 | 0.4126 | 0.895 |
| 0.0093 | 10.0 | 500 | 0.4564 | 0.89 |
| 0.0056 | 11.0 | 550 | 0.4783 | 0.84 |
| 0.0162 | 12.0 | 600 | 0.3161 | 0.89 |
| 0.0019 | 13.0 | 650 | 0.4062 | 0.875 |
| 0.0005 | 14.0 | 700 | 0.3630 | 0.895 |
| 0.0098 | 15.0 | 750 | 0.3410 | 0.9 |
| 0.008 | 16.0 | 800 | 0.3385 | 0.89 |
| 0.0001 | 17.0 | 850 | 0.3434 | 0.895 |
| 0.0067 | 18.0 | 900 | 0.3414 | 0.885 |
| 0.0064 | 19.0 | 950 | 0.3453 | 0.895 |
| 0.0001 | 20.0 | 1000 | 0.3422 | 0.885 |
| 0.0001 | 21.0 | 1050 | 0.3520 | 0.89 |
| 0.0036 | 22.0 | 1100 | 0.3403 | 0.89 |
| 0.0001 | 23.0 | 1150 | 0.3394 | 0.89 |
| 0.0001 | 24.0 | 1200 | 0.3407 | 0.89 |
| 0.0026 | 25.0 | 1250 | 0.3417 | 0.89 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu128
- Datasets 2.18.0
- Tokenizers 0.22.1
- Downloads last month
- -
Model tree for captaincool21/ast-gtzan
Base model
MIT/ast-finetuned-audioset-10-10-0.4593Dataset used to train captaincool21/ast-gtzan
Evaluation results
- Accuracy on GTZANself-reported0.900