license: other
license_name: genereviews
license_link: https://www.ncbi.nlm.nih.gov/books/NBK138602/
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: id
dtype: string
- name: ch_id
dtype: string
- name: keywords
list: string
- name: title
dtype: string
- name: authors
dtype: string
- name: abstract
dtype: string
- name: content
dtype: string
- name: references
list: string
- name: created_date
dtype: string
- name: updated_date
dtype: string
- name: revised_date
dtype: string
- name: journal
dtype: string
- name: source_url
dtype: string
- name: publication_types
list: string
splits:
- name: train
num_bytes: 57554171
num_examples: 929
download_size: 15286246
dataset_size: 57554171
language:
- en
tags:
- medical
- gene
- reviews
- medicine
pretty_name: 'GeneReviews '
size_categories:
- n<1K
task_categories:
- text-generation
GeneReviews Dataset Extraction
This project extracts text and metadata from GeneReviews® chapters downloaded from NCBI Bookshelf and creates a structured dataset in Hugging Face format.
Overview
GeneReviews® is an international point-of-care resource for clinicians, providing clinically relevant and medically actionable information for inherited conditions. This project processes the XML files from the GeneReviews database and creates a structured dataset suitable for machine learning and research applications.
📈 Dataset Statistics:
- Total Records: 929 GeneReviews chapters
- Average Abstract Length: 899.6 characters
- Average Content Length: 56,377.9 characters
- Total References: 13,683 references across all chapters
- Average References per Chapter: 14.7
- Chapters with >100 references: 12 chapters
- Total Keywords: 9,616
- Unique Keywords: 6,824
Source Information
- Source: GeneReviews® on NCBI Bookshelf
- Publisher: University of Washington, Seattle
- ISSN: 2372-0697
- Content Type: Clinical reviews of genetic conditions
- License: Open access for noncommercial research purposes
Dataset Structure
Each record in the dataset contains the following fields:
| Field | Type | Description |
|---|---|---|
id |
string | Unique chapter identifier |
ch_id |
string | Chapter ID (as you renamed it) |
title |
string | Chapter title |
authors |
string | Comma-separated author names |
journal |
string | "GeneReviews®" |
abstract |
string | Chapter abstract/summary only |
content |
string | Chapter body content only (excluding abstract) |
references |
array | Array of reference citations |
keywords |
array | Keywords and terms |
source_url |
string | Link to GeneReviews resource |
publication_types |
array | ["Review", "Clinical Review"] |
created_date |
string | Creation date |
updated_date |
string | Last update date |
revised_date |
string | Revision date |
Files
extract_genereviews.py: Main extraction scriptload_genereviews_dataset.py: Script to load and demonstrate the datasetrequirements.txt: Python dependenciesgenereviews_dataset/: Hugging Face dataset directorygenereviews_dataset.json: JSON version of the dataset
Installation
- Install the required dependencies:
pip install -r requirements.txt
Usage
from datasets import load_from_disk
# Load the dataset
dataset = load_from_disk("genereviews_dataset")
# Access by chapter
record = dataset[0]
chapter_id = record['ch_id']
# Access separated content
abstract = record['abstract'] # Only the abstract
content = record['content'] # Only the body content
references = record['references'] # Array of reference citations
Search for Specific Conditions
# Search for cystic fibrosis
cf_records = dataset.filter(lambda x: "cystic fibrosis" in x['title'].lower())
# Search for cancer-related content
cancer_records = dataset.filter(lambda x: "cancer" in x['content'].lower())
Analyze Publication Dates
# Find recently updated chapters
recent_updates = dataset.filter(lambda x: "2024" in x['updated_date'])
Extract Keywords
# Get all unique keywords
all_keywords = set()
for record in dataset:
all_keywords.update(record['keywords'])
Citation
When using this dataset, please cite:
GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025.
Available from: https://www.ncbi.nlm.nih.gov/books/NBK1116/
License
This dataset is derived from GeneReviews®, which is owned by the University of Washington. Permission is granted to reproduce, distribute, and translate copies of content materials for noncommercial research purposes only, provided that proper attribution is given.