The dataset viewer is not available for this dataset.
Error code: ConfigNamesError
Exception: BadZipFile
Message: zipfiles that span multiple disks are not supported
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
config_names = get_dataset_config_names(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
dataset_module = dataset_module_factory(
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1032, in dataset_module_factory
raise e1 from None
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1007, in dataset_module_factory
).get_module()
^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 640, in get_module
module_name, default_builder_kwargs = infer_module_for_data_files(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 294, in infer_module_for_data_files
split: infer_module_for_data_files_list(data_files_list, download_config=download_config)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 235, in infer_module_for_data_files_list
return infer_module_for_data_files_list_in_archives(data_files_list, download_config=download_config)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 263, in infer_module_for_data_files_list_in_archives
for f in xglob(extracted, recursive=True, download_config=download_config)[
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/utils/file_utils.py", line 1050, in xglob
fs, *_ = url_to_fs(urlpath, **storage_options)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/fsspec/core.py", line 395, in url_to_fs
fs = filesystem(protocol, **inkwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/fsspec/registry.py", line 293, in filesystem
return cls(**storage_options)
^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/fsspec/spec.py", line 80, in __call__
obj = super().__call__(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/fsspec/implementations/zip.py", line 62, in __init__
self.zip = zipfile.ZipFile(
^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/zipfile/__init__.py", line 1354, in __init__
self._RealGetContents()
File "/usr/local/lib/python3.12/zipfile/__init__.py", line 1417, in _RealGetContents
endrec = _EndRecData(fp)
^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/zipfile/__init__.py", line 311, in _EndRecData
return _EndRecData64(fpin, -sizeEndCentDir, endrec)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/zipfile/__init__.py", line 257, in _EndRecData64
raise BadZipFile("zipfiles that span multiple disks are not supported")
zipfile.BadZipFile: zipfiles that span multiple disks are not supportedNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Object Pose Estimation Using Implicit Representation for Transparent Objects
This dataset aggregates high quality 3D mesh assets and rendered data for training and fine-tuning pose estimation models. It unifies four significant datasets: ClearPose, DIMO, HouseCat6D, and TRansPose, all formatted for BOP (Benchmark for 6D Object Pose Estimation) evaluation.
Visualization
Below is a collage showing sample RGB inputs from the constituent datasets:
Component Datasets
This collection aggregates four datasets converted to the standard BOP format to facilitate comparative evaluation.
1. ClearPose
Source: ClearPose Project ClearPose consists of 63 transparent or opaque household objects captured in various lighting conditions and occlusions (e.g., glass utensils on a tabletop).
- Note: This dataset includes the downsampled version (every 100th image from each scene) to account for the small pose differences between consecutive frames in continuous motion and to decrease inference time.
2. DIMO (Dataset of Industrial Metal Objects)
Source: DIMO Project DIMO consists of six reflective metallic parts (colored, shiny, and matte finish) on a metallic surface. These objects exhibit a shiny appearance, designed to challenge rendering and pose estimation methods that must model view dependent effects.
3. HouseCat6D
Source: HouseCat6D Project A large scale multi modal dataset consisting of textured, shiny, metallic, and matte objects of different categories in realistic scenarios. It serves as a comprehensive benchmark for diverse household objects.
4. TRansPose
Source: TRansPose Project TRansPose consists of 99 transparent objects (glassy and plastic objects with different optical properties) cluttered on a tabletop.
- Note: Similar to ClearPose, this dataset is downsampled (every 10th image) from the original continuous motion capture. While the original setup included RGB, RGBD, and TIR images, this distribution relies on RGB images and bounding boxes, as the method requires only RGB and 2D detection.
Visualization
Randomly selected images from these datasets can be seen below:
- (a) ClearPose: Glass utensils on a tabletop.
- (b) DIMO: Shiny metallic parts.
- (c) HouseCat6D: Diverse textured/matte objects.
- (d) TRansPose: Cluttered glassy/plastic objects.
Dataset Structure
The dataset is organized into zipped archives for access.
Archives
ClearPose.zipDIMO.zipHouseCat6D.zipTRansPose.zip
Internal File Structure (after unzipping)
Each sub-dataset follows the BOP directory structure:
dataset/
βββ ClearPose/
β βββ models/ # Object models (.ply, .obj, models_info.json)
β βββ nerfs/ # NeRF data (Instant NGP format)
β βββ test/ # Test scenes
β β βββ 001001/ # Scene ID
β β β βββ scene_camera.json # Camera parameters
β β β βββ scene_gt.json # Ground truth 6D poses
β β β βββ rgb/ # RGB Images
β β β βββ depth/ # Depth Maps
β β β βββ mask_visib/ # Visibility masks
β β βββ ...
β βββ test_targets_bop19.json # BOP-style test targets
βββ DIMO/
β βββ ...
βββ HouseCat6D/
β βββ ...
βββ TRansPose/
βββ ...
This work is associated with the research published in Object Pose Estimation Using Implicit Representation for Transparent Objects, available at SpringerView.
In creating this dataset, we utilized the BOP Toolkit for standardized formatting. This work was supported by the European Union under the project Robotics and advanced industrial production (reg. no. CZ.02.01.01/00/22_008/0004590).
The dataset is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Users are free to share and adapt the material provided they give appropriate credit to the authors and the associated publication.
If you find this dataset useful, please cite it using:
@InProceedings{10.1007/978-3-031-91569-7_15,
author="Burde, Varun and Moroz, Artem and Zeman, V{\'i}t and Burget, Pavel",
editor="Del Bue, Alessio and Canton, Cristian and Pont-Tuset, Jordi and Tommasi, Tatiana",
title="Object Pose Estimation Using Implicit Representation for Transparent Objects",
booktitle="Computer Vision -- ECCV 2024 Workshops",
year="2025",
publisher="Springer Nature Switzerland",
address="Cham",
pages="226--247",
isbn="978-3-031-91569-7"
}
- Downloads last month
- 19,954
