drone-audio-detection-05-12
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0028
- Accuracy: 0.9996
- Precision: 1.0000
- Recall: 0.9996
- F1: 0.9998
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.004 | 1.0 | 4594 | 0.0038 | 0.9987 | 0.9987 | 0.9996 | 0.9992 |
| 0.0018 | 2.0 | 9188 | 0.0031 | 0.9992 | 0.9997 | 0.9992 | 0.9995 |
| 0.0001 | 3.0 | 13782 | 0.0026 | 0.9994 | 0.9998 | 0.9994 | 0.9996 |
| 0.0001 | 4.0 | 18376 | 0.0025 | 0.9994 | 0.9999 | 0.9994 | 0.9996 |
| 0.0 | 4.9990 | 22965 | 0.0028 | 0.9996 | 1.0000 | 0.9996 | 0.9998 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 11
Model tree for preszzz/drone-audio-detection-05-12
Base model
MIT/ast-finetuned-audioset-10-10-0.4593