Tiny Transformers for Environmental Sound Classification at the Edge
Paper
•
2103.12157
•
Published
•
1
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on a subset of ashraq/esc50 dataset. It achieves the following results on the evaluation set:
Training and evaluation data were augmented with audiomentations GitHub: iver56/audiomentations library and the following augmentation methods have been performed based on previous experiments Elliott et al.: Tiny transformers for audio classification at the edge:
Gain
Noise
Speed adjust
Pitch shift
Time masking
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 9.9002 | 1.0 | 28 | 8.5662 | 0.0 | 0.0 | 0.0 | 0.0 |
| 5.7235 | 2.0 | 56 | 4.3990 | 0.0357 | 0.0238 | 0.0357 | 0.0286 |
| 2.4076 | 3.0 | 84 | 2.2972 | 0.4643 | 0.7405 | 0.4643 | 0.4684 |
| 1.4448 | 4.0 | 112 | 1.3975 | 0.7143 | 0.7340 | 0.7143 | 0.6863 |
| 0.8373 | 5.0 | 140 | 1.0468 | 0.8571 | 0.8524 | 0.8571 | 0.8448 |
| 0.7239 | 6.0 | 168 | 0.8518 | 0.8929 | 0.9164 | 0.8929 | 0.8766 |
| 0.6504 | 7.0 | 196 | 0.7391 | 0.9286 | 0.9449 | 0.9286 | 0.9244 |
| 0.535 | 8.0 | 224 | 0.6682 | 0.9286 | 0.9449 | 0.9286 | 0.9244 |
| 0.4237 | 9.0 | 252 | 0.6443 | 0.9286 | 0.9449 | 0.9286 | 0.9244 |
| 0.3709 | 10.0 | 280 | 0.6304 | 0.9286 | 0.9449 | 0.9286 | 0.9244 |
| Parameter | Value |
|---|---|
| test_loss | 0.5829914808273315 |
| test_accuracy | 0.9285714285714286 |
| test_precision | 0.9446428571428571 |
| test_recall | 0.9285714285714286 |
| test_f1 | 0.930292723149866 |
| test_runtime (s) | 4.1488 |
| test_samples_per_second | 6.749 |
| test_steps_per_second | 3.374 |
| epoch | 10.0 |